Introduction

A portacaval shunt (PCS) exposes normal animals to numerous severe disorders, which confirm that sudden diversion of portal blood from the normal liver is incompatible with normal hepatic function. Complete diversion of the portal vein from the liver, hepatofugal blood flow consequential to end-to-side PCS shunt, leads to significant decrease in total liver blood flow and also to liver hypoxia and impairment of its metabolic functions (1-4).

It has been shown that end-to-side portacaval shunt in the normal rat produces a marked alteration in the metabolic, nutritive, and hormonal state (3-5). Portacaval shunting causes a variety of anatomic, metabolic and physiologic changes, such as liver atrophy (6), hyperammonaemia (7-9) and hepatic encephalopathy (9, 10).

Materials and Methods

Animals and experimental design

Two-month-old male Wistar rats, weighing approximately 230 g were maintained at room temperature in a 12-h dark, and 12-h light cycle. They had free access to a conventional chow diet and tap water and were kept in separate cages. The study was approved by the institutional ethics committee for animal expe-
riments. The animals were divided into three groups: control non-operated rats (C rats; n=11), rats with surgical portacaval shunt (PCS rats; n=27), and sham operated animals (SHAM rats; n=17). On day one of the experiment the rats underwent end-to-side portacaval anastomosis according to Lee and Fisher (12) as modified by Bismuth et al., (13). The sham procedure was performed in the same way, except that only venous vessels were clamped for as long as it was necessary to perform anastomosis. Surgery was performed under ether anesthesia. All animals were killed by cervical dislocation eight weeks later. Twenty-four hours before killing food was withdrawn, but not tap water.

Analytical methods

Just prior to killing blood samples were taken from the retroorbital venous plexus, and serum/plasma was stored at 20 °C until used. All biochemical variables were measured in serum/plasma from individual rats. After killing the liver and pancreas were removed from each animal and weighed. Some of the specimens from the juxtasplenic part of the pancreas and from the left major liver lobe were extracted as follows: Tissues were weighed, placed in plastic tubes and immediately extracted for 10 min in 10 vol. of 0.5 mol/L acetic acid in a water bath at 100 °C. After cooling, the tubes were stored at 20 °C until analysis.

Liver function tests

Plasma glucose was measured by the glucose oxidase method using a glucose analyzer 2 (Beckman, Fullerton, CA). Total serum protein, serum albumin, bilirubin, AST and ALT were determined by routine laboratory procedures. Prothrombin time was measured using standard thromboplastin (Ortho Recombiplastin, Ortho Diagnostics, Raritan, NJ) with a Koagulab 16S (Ortho Diagnostics). Fibrinogen was determined according to Von Clauss’s method. Blood ammonia concentration was determined by an enzymatic test (BioMerieux Lab., France) and blood urea concentration by Berthelot’s method.

Radioimmunoassay for insulin, glucagon, somatostatin

Plasma. Basal plasma levels of insulin and glucagon were determined by radioimmunoassay (INEP-Diagnostics, Zemun and NovoBioLabs, Bagsvaerd, Denmark, respectively). Basal plasma somatostatin was measured using commercial kit (Procinx, Pharmaceuticals, Inc. Affinity Research Products Ltd).

Pancreas. Pancreatic content of insulin, glucagon and somatostatin was measured using the same RIA kits as above.

Liver histology. Multiple tissue samples from the left major liver lobe were processed for histological examination by a routine procedure. The liver sections were examined under the microscope after hematoxylineosin, Masson’s trichrome, PAS and Perl’s staining. In liver sections stained with Masson’s trichrome, semiquantitative assessment of fibrosis was blindly performed.

Electron microscopic studies of the liver.

Small liver pieces were immediately placed in cold 3% glutaraldehyde (BDH, England) in 0.2 mol/L cacodylate buffer with 0.2 mol/L sucrose (pH 7.2) and fixed overnight, at 0 °C on a rotor. Then, tissue samples were post-fixed in 1% osmium tetroxide (Fluka, Germany) (in cacodylate buffer, pH 7.4) for 1 hour at room temperature. They were then embedded in Araldite (Fluka, Germany). One micrometer thick sections were cut, stained with toluidine blue and examined under the light microscope. Ultrathin sections were cut and stained with uranylacetate followed by lead citrate. The sections were examined in a JEM 1200 Joel electron microscope (Japan).

Statistical analysis

All values are expressed as mean ± SD. Statistical analysis of data was made using the Mann Whitney nonparametric test and p< 0.05 was accepted as significant.

Results

Body and liver weight and serum parameters relevant for liver functions

Body weight, liver and pancreatic weights, as well as serum parameters characteristic for liver functions in each experimental group at the time of death are summarized in Table I and II.

Body weights were not significantly different between the groups after an 8-week experimental period. However, on week 8 of the experiment, both the relative and absolute weights of liver and pancreas in rats subjected to PCS were lower than in controls (C and SHAM groups).

Table I Absolute and relative weights of liver and pancreas in three groups of rats at the end point of experiment

<table>
<thead>
<tr>
<th>Weights</th>
<th>C (N=11)</th>
<th>SHAM (N=14)</th>
<th>PCS (N=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>234.4 12</td>
<td>237.2 22</td>
<td>236.3 34</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>6.9 1.3</td>
<td>6.7 1.5</td>
<td>5.1 1.2**</td>
</tr>
<tr>
<td>% of body weight</td>
<td>2.9 0.5</td>
<td>3.0 0.5</td>
<td>2.1 0.2**</td>
</tr>
<tr>
<td>Pancreatic weight (g)</td>
<td>0.33 0.27</td>
<td>0.37 0.13</td>
<td>0.49 0.17*</td>
</tr>
<tr>
<td>% of body weight</td>
<td>0.77 0.27</td>
<td>0.8 0.29</td>
<td>1.12 0.38**</td>
</tr>
</tbody>
</table>

** p<0.01, * p<0.05
After PCS there was a highly significant increase (p< 0.01) in levels of blood ammonia, AST and ALT, while concentrations of blood urea, bilirubin, total plasma protein, plasma albumin, prothrombin time and fibrinogen remained unchanged. Serum fasting glucose levels were significantly lower in PCS rats in comparison to controls and sham operated rats.

Table II Biochemical data in three groups of rats at the end point of experiment

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>C (N=11)</th>
<th>SHAM (N=14)</th>
<th>PCS (N=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal glycaemia (mmol/L)</td>
<td>5.2 1.1</td>
<td>4.9 1.0</td>
<td>4.0 1.1**</td>
</tr>
<tr>
<td>Blood urea (mmol/L)</td>
<td>5.4 0.9</td>
<td>5.5 1.1</td>
<td>5.7 1.6</td>
</tr>
<tr>
<td>Blood ammonia (µmol/L)</td>
<td>59.5 9.6</td>
<td>53.5 7.9</td>
<td>183.4 38**</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>67 9.1</td>
<td>69 7.3</td>
<td>107 23.8**</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>34 2.2</td>
<td>33 2.1</td>
<td>59 3.1**</td>
</tr>
<tr>
<td>Serum bilirubin (µmol/L)</td>
<td>8.03 0.17</td>
<td>7.69 0.17</td>
<td>10.08 3.42</td>
</tr>
<tr>
<td>Total plasma proteins (g/L)</td>
<td>70 1</td>
<td>69 2</td>
<td>67 2</td>
</tr>
<tr>
<td>Plasma albumin (g/L)</td>
<td>35 2</td>
<td>33 1</td>
<td>34 1</td>
</tr>
<tr>
<td>Prothrombin time (INR)</td>
<td>1.01 0.03</td>
<td>0.97 0.09</td>
<td>1.00 0.01</td>
</tr>
<tr>
<td>Fibrinogen (g/L)</td>
<td>7.0 0.9</td>
<td>6.9 0.6</td>
<td>7.3 0.3</td>
</tr>
</tbody>
</table>

Table III Pancreatic hormones in control rats (C), sham operated rats (SHAM) and rats with portacaval anastomosis (PCS) at the end point of experiment

<table>
<thead>
<tr>
<th>Animals</th>
<th>Insulin</th>
<th>Glucagon</th>
<th>Somatostatin</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Serum (µIU/mL)</td>
<td>Pancreatic tissue content (µIU/g)</td>
<td>Plasma (µIU/mL)</td>
</tr>
<tr>
<td>C</td>
<td>20.6 12</td>
<td>14.6 6.9</td>
<td>196.5 44</td>
</tr>
<tr>
<td>SHAM</td>
<td>21.3 9.7</td>
<td>13.2 5.0</td>
<td>201.5 36</td>
</tr>
<tr>
<td>PCS</td>
<td>17.7 8.0</td>
<td>12.2 7.3</td>
<td>555 97**</td>
</tr>
</tbody>
</table>

Table III Pancreatic hormones in control rats (C), sham operated rats (SHAM) and rats with portacaval anastomosis (PCS) at the end point of experiment

Discussion

One of the most persistent consequences of the end-to-side PCS in rats was the reduction of body weight during the first 2-4 postoperative weeks in spite of ad libitum feeding (3). After that period, body weight gain in rats with PCS coincided with the increase in animals subjected to sham procedure as well as in controls, 8 weeks postoperatively. All metabolic changes developing in this period were PCS-specific and independent of food intake.

Portacaval shunt caused liver atrophy, manifested by a significant reduction in liver weight, and as a percentage of body weight (3, 10).

Liver histological findings in rats with PCS showed glycogen reduction in hepatocytes and sinusoidal dilatation around the hepatic vein. Moreover, Kupffer’s cells filled with haemosiderin, degenerative changes, and microvesicular fatty changes in hepatic parenchyma surrounding the portal space, were visible. Atrophy of hepatocytes in other parenchymal zones was present. Apoptotic hepatocytes were visible in rats with PCS. These pathohistological changes in the liver which are similar to the findings of other authors (14, 10) cause metabolic and endocrine abnormalities, i.e. disturbance of glucose homeostasis, reduction of IGF-I concentrations in serum and liver tissue, among others.

Ultrastructural characteristics of hepatocyte cell lesions in rats with PCS at the end point of our experiment showed reduction and fragmentation of rough endoplasmic reticulum with destroyed and dilated cisternae and fewer polysomes accompanied with smooth endoplasmic reticulum proliferation. An increase in the number of small lipid droplets followed by
mitochondrial oedema and a significant decrease in glycogen particles content were also noted in PCS rats. These changes partially explain the depression of numerous biosynthetic processes after PCS, such as the production of triglycerides and cholesterol, bile acids, urea synthesis and activity of microsomal enzymatic systems (15, 16).

PCS causes pancreatic hypertrophy, as suggested by a significant increase of pancreas weight in PCS rats compared with C and SHAM rats, either expressed in absolute values or as a percentage of body weight. The growth-promoting effect of PCS in the pancreas suggests that PCS may raise the sensitivity of CCK-A receptors in the pancreas to CCK through increased concentrations of intestinal factors in the circulation (17, 10).

This experimental model of chronic hepatic insufficiency causes metabolic disorders, such as hyperammonaemia (3, 7, 8) which was noted in our study. Hyperammonaemia is most probably the consequence of complete diversion of portal blood rich in ammonia into the systemic circulation and a decreased liver capacity for ammonia uptake.

Hyperammonaemia has a toxic effect on the liver, inducing increased permeability of hepatocyte membranes with significantly increased concentrations of serum transaminase (AST and ALT) as obtained in our study, and a significant positive correlation between ammonia and transaminase concentrations (8). Unchanged concentrations of blood urea (18), bilirubin, total plasma protein, plasma albumin, prothrombin time and fibrinogen were due to unimpaired synthetic function of hepatocytes in PCS rats.

Endocrine consequences of PCS have been reported in rats (5), such as disorders in glucose homeostasis and in plasma concentrations of pancreatic hormones. In our rats with PCS compared with C and SHAM rats, fasting serum glucose levels were significantly reduced, basal insulin level was not significantly changed, and plasma glucagon was markedly increased. These changes were accompanied by a reduction of hepatic glycogen content (liver histology and ultrastructural changes in hepatocytes) and contribute to disorders in glucose homeostasis. Alterations in the secretion pattern of the pancreatic islets play a role in glucose homeostasis (5), but they are primarily related to the functional deterioration of the liver (diversion of the portal blood in the systemic circulation).

Pancreatic insulin content was significantly reduced and, with normoinsulinaemia, indicated that in pancreatic islets of rats with PCS there was an increased storage of insulin in B-cells and reduced synthesis of secretory proteins. Normoinsulinaemia in spite of a decrease in insulin secretion was probably a consequence of diminished extraction of insulin by the liver (5). In patients with cirrhosis hyperinsulinaemia appears to be the result of hepatocellular dysfunction rather than of shunting portal blood to the systemic circulation (19). The pathogenesis of insulin resistance in liver cirrhosis includes lower plasma concentrations of IGF-I and increased plasma concentrations of GH, glucagon, catecholamines (20). Moreover, chronic hyperinsulinaemia contributes to insulin resistance in cirrhosis (21).

In the present study, plasma glucagon level and pancreatic glucagon content were increased in PCS rats compared with C and SHAM rats. Our results are similar to those in a previous study that showed hyperglucagonaemia and a normal secretion pattern of A cell. This hyperglucagonaemia was not caused by hypersecretion of A-cells, but by reduced hepatic extraction of glucagon (5, 22). Decreased hepatic catabolism resulting from progressively impaired hepatic function may play a role in the development of hyperglucagonaemia in patients with cirrhosis and portal hypertension (4). However, pancreatic hypersecretion of glucagon may also contribute to increased plasma glucagon levels in patients with cirrhosis and porto-caval anastomosis (23).

Our results indicate that in rats with PCS, basal plasma somatostatin concentrations were not changed, as well as pancreatic somatostatin content, and were associated with hyperglucagonaemia and impaired insulin release. Normal immunoreactivity and ultrastructural patterns of D-cells in rats with PCS may explain our findings (5).

We conclude, that in rats with PCS, metabolic and endocrine consequences are primarily related to the functional deterioration of the liver, which follows the diversion of the portal blood in systemic circulation. Moreover, abnormalities in carbohydrate metabolism may be related to the secretion patterns of pancreatic hormones.
NEKE METABOLIČKE I ENDOKRINE POSLEDICE PORTO-KAVNOG ŠANTA KOD PACOVA

Tatjana Radosavljević1, Vera Todorović2, Branka Šikić1, Anna Judith Nikolić3

1Institut za patološku fiziologiju, Medicinski fakultet, Beograd
2Institut za medicinska istraživanja, laboratorija za eksperimentalnu patologiju i citologiju, Beograd
3INEP – Institut za primenu nuklearnih energija, Zemun – Beograd, Jugoslavija

Kratki sadržaj: Ispitivane su neke metaboličke i endokrine posledice porto-kavnog šanta u pacova, osam nedelja od operacije. Vrednosti insulin, glukagona i somatostatina u krvi, kao i koncentracija ovih hormona u tkivnom ekstraktu pankreas određivana je radioimmunološkim metodom. Standardnim biohemimskim testovima određivana je serumna koncentracija brojnih parametara kao što su glukoza, amonijak, transaminaze, ureja, bilirubin, ukupni proteini, albumini. Vrednosti insulin i somatostatina su bile normalne, a postojala je hiperglukagemonija u pacova sa porto-kavnim šantom. Takođe, vrednosti amonijaka i transaminaza u operisanih životinja su bile značajno više (p<0,01), dok je koncentracija glukoze značajno snižena (p<0,01). Na osnovu analize dobijenih rezultata može se reći da ispitivane metaboličke i endokrine posledice porto-kavnog šanta u pacova nastaju zbog funkcionalnog oštećenja jetre usled skretanja portalne krvi u sistemsku cirkulaciju.

Ključne reči: pacov, porto-kavni šant, endokrini pankreas, amonijak, glukoza.

References

19. Sirinek KR, O’dorisio TM, Levine BA. Glucose intolerance and hyperinsulinemia of cirrhosis are not results of

Received: July 20, 2001
Accepted: September 10, 2001