S-100β PROTEIN IN PATIENTS WITH SEVERE SEPSIS

Marina Vučelić1, Maja Šurbatović2, Svetlana Vujanić3

1Galathea Biochemical Laboratory, Belgrade,
2Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Belgrade,
3Institute of Medical Biochemistry, Military Medical Academy, Belgrade, Serbia

Summary: The effects of sepsis on the brain are not fully elucidated. This study investigated the serum levels of S100β protein in severe sepsis, as a biomarker of brain damage. The aim was to determine whether the levels of S100β are increased early, at the onset of sepsis, and if this protein is a good early predictor of outcome. We studied 30 patients with severe sepsis, divided into the survivors (n=8) and nonsurvivors (n=22). Blood was sampled within the first 24h after the onset of symptoms. The concentrations of S100β were measured using an electrochemiluminiscence immunoassay (Elecsys 2010, Roche Diagnostics). Also, we measured the levels of C-reactive protein (CRP) using the immunonephelometric assay. Out of 30 patients, 74.4% had increased levels of S100β, while 25.6% had values within the reference range. A total of 30 patients had increased levels of CRP. The mean values of S100β and CRP did not differ significantly between the survivors and nonsurvivors (0.390±0.515 vs. 0.415±0.508 µg/L; 98.76±69.94 vs. 161.68±118.38 mg/L). Correlation between S100β and outcome was not found. The increased levels of S100β indicate possible occult diffuse brain injury, that can be reversible. Moreover, the study showed S100β protein not to be a good early predictor of outcome in severe sepsis.

Keywords: brain damage, C-reactive protein, sepsis, S100β

Introduction

The effects of sepsis on the brain are not fully elucidated. The interplay between direct effects resulting from toxic mediators and indirect effects, such as hypotension, hyperthermia and increased intracranial pressure, contribute to the unclear image of the brain during sepsis. Despite recent advances in the rapid diagnosis and treatment of sepsis, the neurologic sequelae of severe sepsis remain poorly understood. Neurologic dysfunction in the form of encephalopathy occurs frequently in patients with severe sepsis and is associated with increased morbidity and mortality (1–4). Ischemic and hemorrhagic brain lesions are described in autopsied patients who died of sepsis and septic shock (5–7). The diagnosis of septic
encephalopathy can be difficult, because many patients are sedated for various reasons. Very often sedation precedes the onset of detectable neurologic symptoms, thus masking the diagnosis. Also, the central nervous system imaging studies such as computed tomography and magnetic resonance cannot be easily performed and may pose further risk during transport of a critically ill patient. Biomarkers of brain injury can be useful to evaluate brain dysfunction in sepsis. S100 is a small dimeric protein with molecular weight of approx. 10.5 kD. It belongs to a large family of calcium-binding proteins, and is composed of hetero- or homo-dimers of the α- and β-subunit. S100A1 (αα) and S100B (ββ) are predominantly expressed by cells of the central nervous system, mainly astroglial cells, but are also expressed in melanoma cells and to some extent in other tissues (8). As a marker of brain injury it has been used in various conditions such as trauma, ischemia, stroke, cardiac arrest, cardiac and carotid artery surgery, malignant metastases (8–15).

The aim of the study was to determine whether the levels of S100B are increased early, at the onset of sepsis, and if this protein is a good early predictor of outcome.

Materials and Methods

The study was approved by the Ethics Committee of the Military Medical Academy (MMA), Belgrade. We studied 30 patients with severe sepsis, 18 males and 12 females, treated in the Intensive Therapy Unit (ITU). The patients were divided into the survivors (n=8) and nonsurvivors (n=22). The control group comprised 10 healthy volunteers. Blood was sampled within the first 24 h after the onset of symptoms. Serum was separated by centrifugation and stored at −20 °C until analyzed (at least three months). The concentrations of S100B protein were measured using the electrochemiluminescence immunoassay on an Elecsys 10 analyzer (Roche Diagnostics). The minimum level of detection was 0.005 μg/L, and the reference range was <0.105 μg/L. Hemolysis does not interfere with S100B determinations (16). Also, we measured at the same time levels of high sensitivity C-reactive protein (CRP) as an acute phase reactant using the immunonephelometric assay on a Behring Nephelometer II.

The values were expressed as mean ± standard deviation. Statistical tests were performed by the statistical package Statistic for Windows (Stat for Windows, R. 4.5, USA). The difference between groups was determined by the Student’s t test. The correlation was analyzed by the Pearson linear regression test. Values of p<0.05 were taken as statistically significant (17).

Results

Peritonitis was the most common cause of sepsis (56.6%, n=17), followed by pancreatitis (20%, n=6), trauma (16.6%, n=5) and other infections (6.6%, n=2). ITU mortality was very high, 74.4%. In the sepsis group the mean values of S100B and CRP were higher (p<0.01) than in the control group (0.408±0.501 vs. 0.045±0.020 μg/L; 144.9±110.1 vs. 1.91±0.90 mg/L). However, out of 30 patients, 74.4% (n=22) had increased levels of S100B protein, while 25.6% (n=8) had values within the reference range. The data are shown in Table 1. Elevated levels of S100B were found in 6 survivors and 16 nonsurvivors, and 2 survivors and 6 nonsurvivors had normal values. The mean value of S100B protein did not differ significantly between the survivors and nonsurvivors (0.390±0.515 vs. 0.415±0.508 μg/L). Four patients had levels of S100B higher than 1.0 μg/L (twofold higher than the upper limit of the reference range), one of them survived. This patient had a late onset of sepsis relative to primary insult (cholecystectomy). After one month she developed diffuse peritonitis and severe sepsis. The positive predictive value of S100B was 72.7% and the negative predictive value was 25%. Correlation between S100B and outcome was not found.

A total of 30 patients had increased levels of CRP. Although the mean value was lower in the survivor group, between the survivors and nonsurvivors significant difference was not found (98.76±69.94 vs. 161.68±118.38 mg/L). It is interesting that we found a very strong correlation between S100B and CRP, r=0.537, p=0.002 (Figure 1).

Discussion

The main result of this study is that early in the course of sepsis increased levels of S100B do occur in 74.4% patients. In addition, baseline concentrations of S100B were not predictive of the outcome in severe sepsis. Our results are in agreement with the results of other authors (12, 15, 18). Dr Joana and Moren Panni (19) suggest that S100B changes rather than absolute values may be a better marker of severity of sepsis-associated encephalopathy. Although S100B originates from the central nervous system (CNS) and increases in cerebrospinal fluid (CSF) after injury (8, 20), it remains unclear whether elevation of serum levels of S100B is a sign of blood–brain barrier (BBB) dysfunction, neuronal damage or both. Some authors suggest that serum S100B represents a marker of BBB integrity in patients with brain lesions rather than brain neuronal damage (21). Also, we found a strong association between S100B and CRP C-reactive protein is an acute phase reactant synthesized by the liver upon stimulation by proinflammatory cytokines reflecting both the acute and chronic inflammatory states (22, 23). Acute phase reactant changes reflect the presence and intensity of inflammation, and have been
used as a clinical guide to diagnosis and therapeutic management (24). CRP has many pathophysiologic roles in the inflammatory process. A major function of CRP is its ability to bind phosphocholine and thus recognize some foreign pathogens as well as phospholipid constituents of damaged cells. On the other hand, S100 is a functional protein, which is implicated in a variety of intra- and extracellular regulatory activities. In a recently reported review, authors describe S100 as »the CRP of the brain« (25).

Brain dysfunction is a severe complication of sepsis with an incidence ranging from 9% to 71% and is associated with increased morbidity and mortality (1, 26). Sepsis associated encephalopathy (SAE) is defined as a diffuse cerebral dysfunction induced by the systemic response to infection without any clinical or laboratory evidence of direct infections involvement of the central nervous system (18). The mechanism of sepsis-associated encephalopathy involves inflammatory and noninflammatory processes that affect endothelial cells, glial cells, and neurons and induce BBB breakdown, derangements of intracellular metabolism and cell death (26). There is a frequent occurrence of occult diffuse brain injury in sepsis (20, 27).

The increased levels of S100 protein indicate possible occult diffuse brain injury, that can be reversible. Moreover, the study showed S100 protein not to be a good early predictor of outcome in severe sepsis.

Table I

Serum values of S100 and CRP in the control and sepsis group.

<table>
<thead>
<tr>
<th></th>
<th>Control N=10</th>
<th>Sepsis-survivors N=8</th>
<th>Sepsis-nonsurvivors N=22</th>
</tr>
</thead>
<tbody>
<tr>
<td>S100β, μg/L</td>
<td>0.045±0.020</td>
<td>0.390±0.515</td>
<td>0.415±0.508**</td>
</tr>
<tr>
<td>CRP, mg/L</td>
<td>1.91±0.90</td>
<td>98.76±69.94*</td>
<td>161.68±118.38***</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001 vs. control group

![Figure 1](image.png)

Figure 1 Correlation between serum S100β and CRP in patients with severe sepsis.

References

19. Panni JK, Panni MK. Changes in S100B levels rather than absolute values may be a better marker of severity of encephalopathy. Br J Anaesth 2008; 100 (3): 419.

Received: September 12, 2008
Accepted: December 12, 2008