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Summary

Background: To systematically analyze the influence of
genetic polymorphisms of matrix metalloproteinase 9
(MMP9) on susceptibility to chronic obstructive pulmonary
disease (COPD).

Methods: Relevant literatures reporting MMP9 and suscep-
tibility to COPD in PubMed, Web of Science, VIP, Wanfang
and CNKI databases were searched using the key words
»matrix metalloproteinases 9/MMP9, COPD/chronic
obstructive pulmonary disease«. Data of eligible literatures
were extracted and analyzed for the odds ratio (OR) and
corresponding 95% ClI.

Results: A total of 16 independent studies reporting
MMP9-1562C/T and COPD patients were enrolled and
analyzed. None of the genetic models revealed the rela-
tionship between MMP9-1562C/T and susceptibility to
COPD. Subgroup analyses identified lower risk of COPD in
Chinese population carrying the TT genotype for theMMP-
9 rs3918242 relative to those carrying CT and CC geno-
types (P=0.03, OR=0.67, 95% CI=0.46-0.97).
Conclusions: Chinese population carrying the TT genotype
for the MMP-9 rs3918242 present lower susceptibility to
COPD relative to those carrying CT and CC genotypes.
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Kratak sadrzaj

Uvod: Sistematska analiza uticaja genetskih polimorfizama
matriks metaloproteinaze 9 (MMP9) na osetljivost hroni¢ne
opstruktivne bolesti plu¢a (HOBP).

Metode: Relevantna literatura koja izve$tava o MMP9 i pod-
loZznosti HOBP u bazama podataka PubMed, Web of Scince,
VIR Wanfang i CNKI pretraZivana je koris¢enjem kljuénih reci
»matriks metaloproteinaze 9/MMP9, COPD/hroni¢na
opstruktivna bolest pluc¢a«. Podaci iz kvalifikovane literature
su ekstrahovani i analizirani za odnos $anse (OR) i odgovara-
juci 95% CI.

Rezultati: Ukupno je uklju¢eno i analizirano 16 nezavisnih
studija koje su izveStavale o pacijentima sa MMP9-1562C/T
i HOBP Nijedan od genetskih modela nije otkrio vezu
izmedu MMP9-1562C/T i osetljivosti na HOBP. Analize pod-
grupa identifikovale su niZi rizik od HOBP kod kineske popu-
lacije koja nosi TT genotip za MMP-9 rs3918242 u odnosu
na one koji nose CT i CC genotipove (P=0,03, OR=0,67,
95% Cl1=0,46-0,97).

Zaklju¢ak: Kineska populacija koja nosi TT genotip za MMP-
9 rs3918242 predstavlja manju osetljivost na HOBP u odno-
su na one sa CT i CC genotipovima.

Kljuéne re€i: MMP9, polimorfizam, HOBP meta-analiza
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Introduction

Chronic obstructive pulmonary disease (COPD)
is a worldwide disease affecting approximately 3 mil-
lion people. It is estimated that COPD will be the third
leading cause of death by 2020 (1). As a chronic air-
way inflammatory disease, COPD is characterized by
incomplete reversible airflow limitation, inflammatory
cell infiltration, excessive mucus secretion, and airway
remodeling (2). The precise molecular mechanism
underlying the pathogenesis of COPD remains
unclear. At present, it is generally believed that several
risk factors are directly related to the pathogenesis of
COPD, including host and environmental factors (3).
Among environmental factors, smoking, exposure to
chemicals, indoor and outdoor air pollution are risk
factors for COPD (4). Host factors of COPD include
antitrypsin-1, excessive deposition of extracellular
matrix (ECM), corticosteroids, inflammatory stimuli,
and metabolic imbalances (5, 6).

Matrix metalloproteinases (MMPs) are members
of the metformin group and they are capable of
degrading ECMs and regulating extracellular signal-
ing networks (7). MMPs are important in COPD. They
degrade matrix proteins (elastin, collagen) during the
disease progression (8). In the past decade, abundant
researches have been conducted to analyze the rela-
tionship between single nucleotide polymorphisms
(SNPs) of MMPs and COPD risk in some populations
(9-12). However, the conclusions were controversial.
Some reports demonstrated the certain influence of
MMPs on the occurrence of COPD (13-18), while
others did not (9, 12, 19, 20). These conflicting find-
ings may be explained by limited sample size, false
positive results, and publication bias. In this paper, we
performed a comprehensive meta-analysis to assess
the influence of MMP polymorphisms on COPD.

Materials and Methods
Search strategy of literatures

Relevant literatures reporting the relationship
between polymorphisms of MMP9-1562C/T and sus-
ceptibility to COPD in PubMed, Web of Science, VIP
Wanfang and CNKI databases were searched using
the key words »matrix metalloproteinases 9/MMP9,
COPD/chronic obstructive pulmonary disease«.
There were no limitations on published languages.
Citations in each literature were manually reviewed.

Inclusive and exclusive criteria

Inclusive criteria were as follows:1) Case-control
studies conducted in humans; 2) Literatures published
complete data or raw data that could calculate the
genotype distribution; 3) COPD patients underwent
diagnosis of pulmonary function index; 4) Literatures
were conducted on the influence of polymorphisms of
MMP9-1562C/T on susceptibility to COPD.

Exclusive criteria were as follows: 1) Repeated
literatures; 2) Literatures lacked valid raw data; 3)
Reviews, comments, animal experiments, researches
on mechanism and case reports;4) The latest studies
or those with a larger sample size were selected if
data overlapping; 5) Unpublished data.

Flow diagram of literature searching was depict-
ed in Figure 1.

Data extraction

Data were independently extracted and ana-
lyzed by two researchers, and the third one was
responsible for solving any disagreement. Extracted
data included: 1) Baseline data of literatures, includ-
ing publication origin, first author, year or publication,
and etc.; 2) Basic characteristics of subjects, including
sample size, research country, genotype number and
distribution, HWE in control group and etc.

Statistical analysis

Heterogeneity test was conducted by calculating
odds ratio (OR) and the corresponding 95% CI with
the I° test and the Q test. The pooled OR in studies
lacking the heterogeneity was calculated by the fix-
effects model. Otherwise, a random-effects model
was used. Sensitivity analysis was performed by
removing one study each time and analyzing the
remaining in a combination way. The HWE of control
genotype distribution was evaluated using the xz test
and P<0.05 considered as inequivalent. Publication
bias was evaluated by depicting funnel plots and
quantified by Egger’s test. Data analyses were carried
out using RevMan 5.3 and STATA12.0.
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Figure 1 Flow diagram of the publication selection process.
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Results

Baseline characteristics of eligible literatures

Initially, 157 literatures in PubMed, 151 in Web
of Science, 1 in CNKI, 77 in VIP and 15 in Wanfang

literatures were excluded after the first-round screen-
ing. Subsequently, 14 literatures on mechanisms, 6
reviews, 6 literatures reporting other diseases, 2 liter-
atures without complete data and 2 reporting other
mutant sites were excluded. Finally, 16 literatures

database were searched out, with a total of 395 li-
teratures. A total of 62 replicates and 287 irrelevant

were included in this study (Figure 7).

Table | Main characteristics of studies included in the meta-analysis.

Author Year Country  |Journal name/ |Genotyping SNP loci (Pywe) Sample size Control Sample
publication methods
origin
Zhou 2004 [China Chinese Medical |PCR- rs3918242 100 (male=98, |100 (male=99,|Whole
Journal sequence (PHwe=0.92) female=) female=1) blood
Isao lto 2005 |Japan Am J Respir Crit |PCR-RFLP rs3918242 84 (male=81, 85 (male=69,
Care Med (pywe=0.41) female=3) female=16)
Zhang 2005 |China Chin J Epidemiol | PCR-RFLP rs3918242 147 (male=135, |120 Whole
Rongbao (Ppwe=0.09) female=12) (male=110, blood
female=10)
Han 2006 |Asian Chin J Tuberc PCR-RFLP rs3918242 60 52 Whole
Respir Dis (pywe=0.48) blood
Testaigzi 2006 |Caucasian |Int J Chron PCR-RFLP rs3918242 123 262 Whole
Obstruct Pulmon (pywe=0.39) blood
Dis
Korytina 2008 |Russia Russian Journal |PCR-RFLP rs3918242 318 319 Whole
of Genetics (pwe=0.53) blood
Shih-Lung 2009 |Taiwan Biochem Genet |PCR-RFLP rs3918242 184 (male=152, |212 Whole
Cheng (China) (Prwe=0.23) female=32) (male=182, blood
female=30)
H. Schirmer |2009 |Brazil Genetics and PCR rs3918242 89 97 Whole
Molecular (PHwe=0.60) blood
Research
Shih-Yup 2010  |Korean Basic Science PCR-sequence |rs3918242 301 333 Whole
Lee Investigations (pywe=0.376) blood
Hua 2010 |[China Int J Respi PCR-RFLP rs3918242 180 (male=142, |180 Whole
(pywe=0.04) female=38) (male=130, blood
female=50)
Korytina 2012 |Russia Molecular PCR-RFLP rs3918242 391 514 Whole
BIOlOgy (pHWE=O67) blood
Sarra Bchir  [2015 | Tunisia Mol Diagn Ther |PCR-RFLP rs3918242 138 (male=122, 216 Whole
(pywe=0.02) female=16) (male=155, blood
female=61)
Marja 2016 |Serbia Environmental  |rs3918242 86 100 Whole
Stankovic and Molecular  [(pHWE=0.28) blood
Mutagenesis.
PCR-RFLP
Marja 2017 |Serbia JOURNAL PCR-RFLP rs3918242 122 100 Whole
Stankovic OF CHRONIC (pwe=0.28) blood
OBSTRUCTIVE
PULMONARY
DISEASE
Tan Jie 2017 |China Journal PCR-RFLP rs3918242 186 (male=92, |[219 Whole
Of Inner (PHwe<0.001) female=294) (male=105, blood
Mongolia female=112)
Medical Universit
Lwona 2018 |[Poland BioMed Research| PCR-RFLP rs3918242 335 309 Whole
Gilowska International (pywe=0.33) (male=87, (male=229, blood
female=248) female=80)

SNP=Single nucleotide polymorphism; HWE = Hardy-Weinberg equilibrium; pHWE=p-value of Hardy-Weinberg Equilibrium test in

controls for each locus; PCR = polymerase chain reaction
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Baseline characteristics of eligible literatures
were listed in Table I. Briefly, 16 case-control studies
were published from 2004-2018, including 13 stud-
ies published in English-language scientific journals
and 3 in Chinese-language scientific journals.
Genotyping methods were conducted using poly-
merase chain reaction (PCR), PCR-RFLP and PCR-
sequence. ldentification of single nucleotide polymor-
phisms (SNPs) was conducted by extracting blood
samples of subjects.

In the 16 eligible literatures, 5 analyzed Chinese
population, 1 analyzed Japanese population, 2 ana-
lyzed Russian population, 1 analyzed Brazilian popu-
lation, 1 analyzed Korean population, 1 analyzed
Tunisian population, 2 analyzed Serbian population, 1
analyzed Poland population, 1 analyzed Asian popu-
lation and 1 analyzed Caucasian population. Sample
size of each literature was 60-391.

Meta-analysis

A total of 2011 COPD patients and 2249
healthy controls were enrolled. The influence of
MMP9 (-1562) C/T on susceptibility to COPD was
assessed using different genetic models. No relation-
ship was found between the CC vs. TT genotype of
MMP9 rs391842 and susceptibility to COPD in the
allele model (P=0.41, OR=1.12, 95% Cl=0.86-
1.47) (Figure 2 A-C). The other three genetic models
obtained the same conclusion, including the domi-
nant model (CC vs. CT+TT, P=0.13, OR=0.82,
95% Cl=0.63-1.06), recessive model (TT vs.
CC+CT, P=0.87, OR=0.97, 95% Cl=0.65-1.43)
and over-dominant model (CT vs. CC+TT, P=0.51,
OR=1.13, 95% CI=0.79-1.61).

Subgroup analyses were performed based on
the ethnic populations, involving Asian population (8
literatures), European population (3 literatures),
Caucasian population (3 literatures) and African pop-
ulation (2 literatures). The random-effects model was
utilized owing to the different degrees of hetero-

558

Study rs3918242 C>T %
o] (CC VS. CT&TT) RR (95% CI) Weight
1
Zhou (2004) — 0.88 (0.81. 0.95) 7.95
Isao Ito (200%) —:——0— 1,08 (0.88. 1.28) 524
ZHANG Rong-bao (2005) —_— 0.88 {0.77, 1.01) ees
Han (2008) + . 0.83 (0.56, 1.25) 1.99
Testaigzi (2008) —-o--— 0.91 (0.79. 1.04) 6.43
Korytina (2008) ——r— 1.03 (0.95, 1.12) 7.91
Shih-Lung Cheng (2009) ~ ' 0.71 (0.57.0.87) 474
Shin-Yup Lee (2009) V| ——— 1.15(1.04, 1.20) 765
H. Schirmes (2009) —l--— 1.00 (0.88, 1.13) 672
Hus (2010) —_— ) 0.74 (0.6, 0.83) 7.13
Koryting (2012) -‘—-r— 1.01 (0.94, 1.09) 8.15
Sarra Bohir (2018) -E—l%'— 1.03 (0.93, 1.13) 7.50
Marija Stankovic (2016) —— 0.86 (0.70, 1.05) 472
Marija Stankovic (2017) —G:—— 0.93(0.78. 1.11) 5.50
TAN Jie (2017) - - 118(0.92, 1.51) 393
lwona Gilowska (2018) 5—-0-— 1.04 (0.95, 1.14) 7.78
Overall [l-squared = 78.1%, p = 0.000) O 0.95 (0.89, 1.02) 100.00
NOTE: Weights are from random effects analysis :
1 1
1

18

Figure 2A Forest map of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD.
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Study %
rs3918242 C>T
0 RR (95% Cl) Weight
(TTvs. CC&CT)
Isso Ito (2005) 202 (0.19, 21.90) 0.64
ZHANG Rong-bao (2005) & 0.12(0.01, 2.24) 248
Han (2008) ——— 1.30 (0.50, 3.41) 413
Testaigzi (2008) - 2.13 (0.70, 8.45) 247
Korytina (2008) ————— 1.50 (0.43, 5.28) 257
Shih-Lung Cheng (2009) — 1.94 (1.08, 3.49) 9.50
Shin-Yup Lee (2009) 0.12(0.02, 0.98) 5.50
H. Schitmer (2008) + 3.27 (0.13,79.17) 0.31
Hua (2010) ~+ 0.20 (0.01, 4.14) 1.61
Korytina (2012) _—— 1.11 (0.38, 3.41) 308
Sama Behir (2015) — 0.26(0.03, 2.14) 3.01
Marija Stankevic (2018) —_— 0.58 (0.11, 3.10) 238
Marija Stankovic (2017) 0.41(0.08, 2.19) 283
TAN Jie (2017) 0.88 (0.69, 1.13) 52385
hwona Gilowsks (2018) 0.72(0.27. 1.90) 0.02
Zhou (2004) (Excluded) 0.00
Overall (l-squared = 29.5%, p = 0.135) 0.95(0.78, 1.16) 100.00
] I I
00809 1 184
Study rs3918242 C>T %
5 (CT vs. CC&TT) RR (9% C)) Weight
'
Zhou (2004) : 7.00 (1.63, 30.00) 221
1
1330 Ito (200%) —1 0.80 (0.48, 1.35) 597
ZHANG Reng-bao (2005) —— 1.76 (1,08, 2.87) e.18
Han (2008} —_—— 1.13(0.72.1.77) 638
Testaigzi (2008) —h— 1.20 (0.82, 1.76) 8.75
1
Konytina (2008) e 0.87 (0.65. 1.17) 7.18
i
Shih-Lung Cheng (2009) -lg- 1.30 (1.01, 1.68) 7.40
Shin-Yup Lee (2009) — 0.81(0.60, 1.08) 7.18
)
H. Schirmer (2009) e 0.95 (0.49, 1.84) 520
Hua (2010) i — 3.75 (2.25. 0.25) 0.03
Korytina (2012) 0.96 (0.75, 1.24) 7.28
Sama Bchir (2015) ' 1.00 (0.62, 1.61) 0.22
Mavija Stankovic (2016) ——— 1.50 (0.90, 2.35) 0.38
Marija Stankovic (2017) -+ 1.30 (0.84, 2.01) 8.45
TAN Jie (2017) — ' 0.18 (0.09, 0.27) 5.89
1
twona Gilowsis (2018) —_— 0.91(0.68, 1.21) 7.24
Overall (l-squared = 84 8%, p = 0.000) <> 1.08 (0.84, 1.40) 100.00
]
NOTE: Weights are from random effects analysis :
1 )
0333 1 30

Figure 2B Forest map of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD.
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Study rs3918242 C>T %
- (C Allele vs. T Allele) RR (95% C) Weight
'
Zhou (2004) ] = 3 7.00 (1.81, 20.40) 1.65
Isa0 Ito (2005) —-;l-‘.— 0.90 (0.53, 1.50) 553
ZHANG Rong-bao (2005) - 1.34 (0.84, 2.14) 591
Han (2008) ——-Il-—- 1.19(0.82, 1.73) 6.62
Testaigzi (2008) a:—o-—- 1.36 (0.96, 1.94) 0.77
Korytina (2008) e 0.93 (0.69, 1.25) 7.19
Shih-Lung Cheng (2009) E—t— 1.50 (1.21, 1.85) 788
Shin-Yup Lee (2008) —_—, 0.68 (0.51, 0.92) 7.14
H. Schirmer (2009) —-;-— 1.09 (0.56. 2.11) 4.57
Hua (2010) - —_— 3.00 (1.85, 4.87) 578
Kerytina (2012) —— 0.98 (0.76, 1.20) 7.43
Sarra Behir (2015) —-.-- 0.82(0.52, 1.29) 597
Marija Stankovic (2016) —— 1.27 (0.82, 1.96) 6.16
Marija Stankovic (2017) -—-l-—- 1.08 (0.71, 1.64) 0.26
TAN Jie (2017) &= | 0.64 (0.56, 0.74) 8.04
twona Gilowska (2018) -H&I 0.87 (0.00, 1.14) 7.32
Cversll (l-squared = 83.8%. p = 0.000) <$> 1.11 (0.90, 1.37) 100.00
i
NOTE: Weights are from random effects analysis :
.03!29 1 3-al.4

Figure 2C Forest map of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD.

geneity (I2>50%, P<0.05). The data showed no
relationship between MMP9 polymorphisms and
COPD risk under the different genetic models
(P>0.05) (Figure 3 C-D).

Subsequently, we individually analyzed the
relationship between MMP9 polymorphisms and
COPD in Chinese population, involving 5 literatures
(15, 18, 21-23). Except for the recessive model (TT
vs. CC&CT) analyzed by the fix-effects model
(P=0.13, I°=46%), the remaining were assessed
using the random-effects model (1°>50%, P<0.05)
(Figure 4). Our data showed that Chinese popula-
tion carrying the TT genotype for the MMP-9
rs3918242 was closely related to susceptibility to
COPD relative to those carrying CT and CC geno-
types (P=0.03, OR=0.67, 95% CI=0.46-0.97).
Such a difference was not observed in the dominant
model (CC vs. CT&TT), over-dominant model (CT
vs. CC&TT) and allele model (C Allele vs. T Allele)
(P>0.05) (Figure 4).

Heterogeneity and sensitivity analysis

Significant heterogeneity was identified in the
dominant model, over-dominant model and allele
model analyzing the relationship between MMP9
(-1562) C/T and susceptibility to COPD (all
P<0.001). No remarkable changes in 12 and P values
were observed after removing a single study. In addi-
tion, sensitivity analysis was not altered by removing
any study each time (data not shown).

In the subgroup analyses based on different eth-
nic gopula’rions, all genetic models showed the results
of >50% and P<0.05. We did not find any changes
in 1 and P values after removing a single study.
Sensitivity analysis was not influenced by removing a
single study (data not shown).
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Shih-Lung Cheng 2009 76 184 124 212 7.3% 0.50 (0.33, 0.75) -
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Figure 3A, B Subgroup analyses of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD in dif-
ferent regions and different pairs of comparisons.
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Figure 3C, D Subgroup analyses of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD in dif-

ferent regions and different pairs of comparisons.
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Figure 4 Subgroup analyses of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD in Chinese

population and different pairs of comparisons.

Publication bias

A wide range of search strategies was carried
out to minimize potential publication biases. After
quantification using Egger’s test, the data showed no
publication biases between MMP9 (-1562) C/T and

susceptibility to COPD in the three genetic models
except for the allele model (CCvs. CT+TT, P=0.325;
TT vs. CC+CT, P=0.541; CT vs. CC&TT, P=0.553;
C allele vs. T allele, P=0.017) (Figure 5).
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Figure 5 Subgroup analyses of the relationship between the SNP of MMP-9 rs3918242 and susceptibility to COPD in Chinese

population and different pairs of comparisons.

Discussion

MMPs are a class of zinc-dependent endopepti-
dases that degrade major protein components of the
ECM. They participate in development- and inflam-
mation-related tissue remodeling and repair (7).
MMP-9 (gelatinase B) can degrade ECM proteins,
such as type IV collagen and gelatin (24). In addition,
it exerts a vital role in airway inflammation and
remodeling (25, 26). MMP-9 protects ventilator-
induced lung injury by reducing infiltration of alveolar
neutrophils (27).

COPD is a common respiratory disease charac-
terized by airflow limitation. The pathogenesis of
COPD is complex, involving inflammatory response,
oxidant-antioxidant imbalance, and MMPs-induced
proteolysis of the alveolar wall. MMP9, one of the
most widely studied MMPs, decomposes most of the
components of ECM by degrading structural proteins,
such as collagen and elastin (28). Many studies have
reported the involvement of MMP9 in the develop-
ment of lung diseases (29). MMP9 polymorphism is
identified to increase the susceptibility to respiratory
diseases (30-33). Multiple SNPs of MMP9 have been
discovered. Among them, C/T mutation on MMP9
(-1562) rs3918242 results in the increased promoter

activity owing to the deletion of the transcriptional
repressor binding site (34).

So far, studies focusing on the correlation
between MMP9 -1562 C/T polymorphism and COPD
are relatively rare and uncertain. Studies with a small
sample size lack the statistical power and often lead
to contradictory conclusions. Meta-analysis provides
convincing evidences by calculating data extracted
from multiple studies. In this paper, we obtained the
conclusion that MMP9 -1562 C/T polymorphism was
not associated with susceptibility toped in different
putative genetic models. Subgroup analyses showed
that Chinese population carrying the TT genotype for
the MMP-9 rs3918242 are risky of COPD relative to
those carrying CT and CC genotypes.

Inconsistent with our results, some studies have
demonstrated that the MMP9 -1562 C>T polymor-
phism indeed influences COPD risk. Zhou et al. (35)
illustrated that the TT genotype of MMP9 -1562 C/T
polymorphism is a genetic risk factor for severe
COPD. Korytina et al. (36) have indicated the corre-
lation between the TT genotype of MMP9 -1562 C/T
polymorphism and COPD severity. Similarly, a study
conducted in Russia showed a significant difference
in the frequency distribution of MMP9 -1562 C>T
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among COPD patients with different severity levels
(37).

Some shortcomings in this study should be
pointed out. First of all, many complex factors were
not adjusted, such as gender, age, and smoking his-
tory. Secondly, some studies (16, 20, 23) had small
sample sizes and did not have enough capacity to
detect the risk of COPD. Thirdly, the lack of raw data
limited the further analysis of the potential interac-
tions between genetic risks and environmental factors
in COPD. Studies with large sample sizes in a multi-
center hospital are required for further validation.

Conclusions

Chinese population carrying the TT genotype
for the MMP-9 rs3918242 present lower susceptibili-
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