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Summary 
Background: Overproduction of free radicals accompanied
with their insufficient removal/neutralization by antioxida-
tive defense system impairs redox hemostasis in living
organisms. Oxidative stress has been shown to be involved
in all the stages of carcinogenesis and malignant
melanocyte transformation. The aim of this study was to
examine association between oxidative stress development
and different stages of melanoma. 
Methods: The measured oxidative stress parameters
included: superoxide anion radical, total and manganese
superoxide dismutase, catalase and malondialdehyde.
Oxidative stress parameters were measured spectrophoto-
metrically in serum samples from melanoma patients
(n=72) and healthy control subjects (n=30). Patients were
classified according to AJCC clinical stage. 
Results: Average superoxide anion and malondialdehyde
concentrations were significantly higher in melanoma
patients than in control group, with the highest value of
superoxide anion in stage III, while malondialdehyde high-
est value was in stage IV. The activity of total and man-
ganese superoxide dismutase was insignificantly higher in
melanoma patients than in control group, while catalase
activity was significantly higher. The highest activity of total

Kratak sadr`aj
Uvod: Prekomerna produkcija slobodnih radikala i njihova
nedovoljna eliminacija/neutralizacija putem sistema anti oksi -
dativne odbrane, naru{ava redoks homeostazu u organizmu.
Oksidativni stres je uklju~en u sve faze razvoja karcinoma i
maligne transformacije melanocita. Cilj ove studije bio je da
se ispita razvoj oksidativnog stresa u razli~itim stadijumima
melanoma. 
Metode: Parametri za procenu oksidativnog stresa su: super -
oksil anjon radikal, ukupna i mangan superoksidna dizmuta -
za, katalaza i malondialdehid. Parametri oksidativnog stresa
su mereni metodom spektrofotometrije u serumu bo   lesnika
sa melanomom (n=72) i zdravih kontrolnih oso ba (n=30).
Bolesnici su klasifikovani prema AJCC kriterijumu. 
Rezultati: Prose~ne koncentracije superoksil anjon radikala
i malonaldehida bile su zna~ajno ve}e kod bolesnika sa
melanomom u odnosu na kontrolnu grupu, najve}a vred-
nost superoksil anjon radikala bila je u III stadijumu, a
malondialdehida u IV stadijumu. Aktivnost ukupne i man-
gan superoksidne dizmutaze bila je nezna~ajno pove}ana
kod obolelih od melanoma u odnosu na kontrolnu grupu,
dok je aktivnost katalaze bila statisti~ki zna~ajno ve}a.
Najve}a aktivnost ukupne superoksidne dizmutaze bila je u
III stadijumu, a mangan superoksidne dizmutaze u IV sta-
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Introduction

World Health Organization classified melanoma
into four common types: superficial spreading, nodu-
lar, lentigo maligna and acral lentiginous; and six less
frequent (1). Although melanoma accounts for only
4% of all skin cancers, it causes the greatest number
of skin cancer related deaths worldwide (2). It also
affects other extra-cutaneous pigment-containing
sites including eyes, meninges, esophagus and
mucous membranes. Cutaneous melanoma is the
most common and aggressive subtypes of melanoma,
arising from malignant transformation of epidermal
melano cytes (3), while mucosal melanoma arising
from mucous membranes melanocytes and uveal
melanoma from ocular stroma melanocytes (4).
Melanoma is characterized by high invasion and
metastasis capacity and remarkable genotypic and
phenotypic heterogeneity (5). It is located mostly on
the back of male and legs of female. Melanoma usu-
ally affects Caucasian in the fourth life decade. Men
found to be more vulnerable to melanoma than
women (6). Melanoma risk factors include pale skin,
blond or red hair, numerous freckles and tendency to
burn and tan poorly (7, 8), existence of more than 50
acquired naevi (9) or 5 dysplastic naevi, large con-
genital nevi (10), chemical exposures, immunosup-
pression, genetic factors, scars etc. 

Malignant melanocyte transformation has been
recognized to be associated with oxidative stress (OS)
(11). Redox homeostasis impairment in living organ-
isms is consequence of free radicals (FRs) overpro-
duction and/or insufficient antioxidative defense.
Oxidative injuries of biomolecules (including DNA,
proteins and lipids) disrupt cell`s signalization, devas-
tate reduction equivalent cell sources and energy and
usually culminate with cell death (apoptosis).
Noteworthy, changed cell signalization can trigger
disease development. 

Cell mitochondrial respiratory chain, inflamma-
tory responses and oxidative metabolism of endoge-
nous as well as exogenous compounds are the major
sources of FRs generation in humans. Reactive oxy-
gen/nitrogen/thiyl species (ROS/RNS/RSS) have
been shown to be involved in all three stages of car-
cinogenesis (initiation-promotion-progression) (12–
14). Extensive DNA damage induced by FRs can lead
to mutation, alteration of phenotypic expression and

cell death. Antioxidative defense system (ADS), com-
posed of antioxidative enzymes and antioxidants, pre-
vents biomolecules oxidative injury through FRs
sequestration and reparation of already oxidatively
damaged cell constituents (12, 13). 

American Joint Committee on Cancer (AJCC)
set up four melanoma stages based on the status of
tumor thickness/size, ulceration, mitotic rate, pres-
ence of micrometastasis, tumor positive lymph nodes
and distant metastasis (15).

Herein, we studied the association between OS
development and melanoma stages by measuring OS
parameters, including: superoxide anion radical (O2

•-),
total and mitochondrial superoxide dismutase (tSOD,
Mn-SOD) and catalase (CAT) activities and lipid per-
oxidation (LPO) by measuring malondialdehyde
(MDA).

Materials and Methods

Consented melanoma patients were recruited
from the Clinic for Dermatology and Venereology and
Melanoma Center of the Military Medical Academy,
Belgrade, Serbia, while healthy controls referred to
healthy persons (with no prior history of cancer) on
periodical systematic examinations. The study was
approved by the local Research Ethics Committee,
Military Medical Academy (11-03/2014). 

According to the 7th edition of AJCC there are
four melanoma stages: IA stage- tumors not thicker
than 1.0 mm, not ulcerated, and have a mitotic rate
<1 mitosis/mm2; stage IB- tumors are >1.0 mm and
either have at least 1 mitosis/mm2 or evidence of
tumor ulceration; stage IIA-ulcerated, 1.01–2.0 mm
sized tumors or no ulcerated, 2.01–4.0 mm sized
tumors; stage IIB-ulcerated, 2.01–4.0 mm sized
tumors or no ulcerated, thicker than 4.0 mm; stage
IIC-ulcerated, thicker than 4.0 mm; stage III- isolated
tumor cells or tumor deposits >0.1 mm (micrometas-
tasis, tumor positive lymph nodes) detected histo -
pathologically or immunohistochemically; stage IV-
mela  nomas with distant metastasis (15). 

Herein, 72 melanoma patients (33 men and 39
women, mean age 54.72 ± 16.50; total melanoma
patients – TMP group) were classified into three
stages: initial (joined patients with IA, IB, IIA, IIB, and

superoxide dismutase was in stage III, while the highest
activity of manganese superoxide dismutase was in stage
IV. Catalase activity was increasing with the disease pro-
gression achieving the maximum in stage III. 
Conclusions: Results of our study suggest that melanoma is
oxidative stress associated disease, as well as deteriorated
cell functioning at mitochondrial level.

Keywords: antioxidants, free radicals, melanoma, oxida-
tive stress

dijumu. Aktivnost katalaze je rasla sa napredovanjem bole-
sti i dostigla maksimum u III stadijumu. 
Zaklju~ak: Rezultati na{e studije ukazuju na povezanost
melanoma i oksidativnog stresa, kao i na pogor{anu
funkciju }elija na nivou mitohondrija.

Klju~ne re~i: antioksidansi, melanom, oksidativni stres,
slobodni radikali
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IIC stages), middle (III melanoma stage) and final (IV
melanoma stage), according to the 7th edition of
AJCC melanoma classification (15). Thirty healthy
controls (15 men and 15 women, mean age 50.10 ±
25.20) were recruited as control group – C group. 

Samples

Venous blood from healthy controls and
melanoma patients was collected in vacuettes with
clot activator. After isolation (centrifugation at 3000
rpm for 10 minutes) serum samples were frozen at -
70 °C, until testing. The activity of CAT, tSOD and
Mn-SOD and levels of O2

•- and MDA were analyzed.

Determination of O2
•-

Superoxide anion was determined by the reduc-
tion of nitroblue-tetrazolium (NBT) in alkaline nitrogen
saturated medium (16). Kinetic analysis was perfor -
med at 550 nm on Ultrospec 2000 spectropho -
tometer. The results were expressed as mmol red
NBT/min/L.

Determination of t-SOD

Superoxide dismutase (EC 1.15.1.1.; SOD) activ-
ity was measured spectrophotometrically as the inhibi-
tion of epinephrine spontaneous auto-oxidation at 480
nm (17). The kinetics of sample enzyme activity was
followed in a carbonate buffer (50 mmol/L, pH 10.2)
containing 0.1 mmol/L EDTA after the addition of 10
mmol/L epinephrine, on Ultrospec 2000 spectropho-
tometer. Data were expressed as U/mL.

Determination of Mn-SOD

Activity of Mn-SOD was measured at the same
way as t-SOD (17) with the modification in sample
amount and proceeded incubation with 25 mL of
KCN (8 mmol/L) (to block Cu/Zn-SOD) for 20 min,
on the room temperature.

Determination of CAT 

Catalase (EC 1.11.1.6) activity was determined
spectrophotometrically by using ammonium molyb-
date to produce yellow complex with H2O2 (18).
Kinetic analysis was performed at 405 nm on
Ultrospec 2000 spectrophotometer. CAT activity was
defined as mmol H2O2 reduced per minute (mmol
H2O2/min). Data were expressed as kU/L.

Determination of lipid peroxidation

Serum MDA level was measured by thiobarbi-
turic acid reactive substances (TBARS) assay, as

described by Girotti et al. (19). Two molecules of
TBARS reagent (15% trichloroacetic acid + 0.375%
thiobarbituric acid + 0.25 mol/L HCl) react with
MDA, forming complex with absorbance measurable
at 531 nm. The results were expressed as mmol/L.

Statistical analysis

Kolmogorov-Smirnov normality test followed by
nonparametric one-way ANOVA (for multiple groups
analysis) and Mann-Whitney (two groups analysis)
tests were used in statistical data analysis. Spearman’s
test was used to test correlation between OS param-
eters across melanoma stages. Statistically significant
differences were considered at p<0.05. The values
are expressed as means with standard error mean
(SEM), since data did not follow Gaus distribution and
standard deviation can not be used. Graph Pad Prism
5 software was used for data analysis. Power analysis
and sample size were obtained using GPower sta -
tistical analysis program. It was calculated that total
sample size is 66, based on effect size 0.4, a=0.05
(type 1 error probability), power analysis 0.8 and
three groups.

Results

Superoxide anion in melanoma patients 

The highest O2
•- was measured in group III,

though elevated values were documented in all
groups: TMP (p<0.0001), I+II (p<0.0001), III
(p<0.0001) and IV (p=0.0005) compared to C
group (Figure 1). No significant differences were
found across the groups.

Total superoxide dismutase activity in melanoma
patients 

Total SOD activity was significantly high only in
III group compared to C group (p=0.0322) (Figure
2). 

Manganese superoxide dismutase activity in
serum of melanoma patients 

In group IV, Mn-SOD accomplished significantly
higher activity than in all other groups: I+II (p=
0.0086), III (p=0.0201) and C group (p=0.0038)
(Figure 3). Mn-SOD activity showed a clear increment
with the disease progression.

Catalase activity in melanoma patients 

Catalase activities in groups: TMP (p=0.0081),
I+II (p=0.0269) and III (p=0.0018) were signifi-
cantly higher than in C group (Figure 4). The highest
CAT activity was in group III. 
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Figure 1 Superoxide anion radical in serum of melanoma patients: Serum O2
•- levels (expressed as mmol red NBT/min/L) are

presented as average (SEM). Statistically significant differences were considered at p<0.05. Labeling: ***p<0.001. Melanoma
patients’ groups (according to AJCC): I+II (n=53), III (n=14) and IV (n=5). TMP- total melanoma patients (n=72), C-controls
(n=30), NBT- nitroblue tetrazolium

Figure 2 Total superoxide dismutase activity in serum of melanoma patients: Serum tSOD (sum of Cu/Zn-SOD and Mn-SOD)
(U/mL) is presented as average (SEM). Statistically significant differences were considered at p<0.05, labeled as *. Melanoma
patients’ groups (according to AJCC): I+II (n=53), III (n=14), IV (n=5). TMP- total melanoma patients (n=72) and C-controls
(n=30)
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Figure 3 Manganese superoxide dismutase activity in serum of melanoma patients: Serum Mn-SOD (U/mL) is presented as aver-
age (SEM). Statistically significant differences were considered at p<0.05 Labeling: *p<0.05, **p<0.01. Melanoma patients’
groups (according to AJCC): I+II (n=46), III (n=13), IV (n=4). TMP- total melanoma patients (n=63) and C-controls (n=21)

Figure 4 Catalase activity in serum of melanoma patients: Serum CAT (kU/L) is presented as average (SEM). Statistically signif-
icant differences were considered at p<0.05. Labeling: *p<0.05, **p<0.01. Melanoma patients’ groups (according to AJCC):
I+ II (n=53), III (n=14) and IV (n=5). TMP- total melanoma patients (n=72) and C-controls (n=30)



J Med Biochem 2018; 37 (1) 17

Figure 5 Lipid peroxidation in serum of melanoma patients: Lipid peroxidation (mmol MDA/L) is presented as average (SEM).
Statistically significant differences were considered at p<0.05. Labeling: *p<0.05, **p<0.01, ***p<0.001. Melanoma patients’
groups (according to AJCC): I+II (n=53), III (n=14) and IV (n=5). TMP- total melanoma patients (n=72) and C-controls (n=30).

Table I Correlation between OS parameters in early melanoma stage.

Spearman's correlation was used to test OS parameters association with melanoma stage. Two tailed test Spearman’s correlation
was performed. Labeling: number of patients – N; Correlation coefficient – r; Statistical significance – p (*p<0.05, **p<0.01)

Correlations: I+II stage

O2
•- MDA CAT t-SOD Mn-SOD

O2
•-

r 1.000 0.177 -0.491** -0.359** -0.292*

p – 0.206 0.000 0.008 0.049

N 53 53 53 53 46

MDA

r 0.177 1.000 -0.134 0.037 0.044

p 0.206 – 0.338 0.792 0.772

N 53 53 53 53 46

CAT

r -0.491** -0.134 1.000 0.570** 0.366*

p 0.000 0.338 – 0.000 0.012

N 53 53 53 53 46

t-SOD

r -0.359** 0.037 0.570** 1.000 0.393**

p 0.008 0.792 0.000 – 0.007

N 53 53 53 53 46

Mn-SOD

r -0.292* 0.044 0.366* 0.393** 1.000

p 0.049 0.772 0.012 0.007 –

N 46 46 46 46 46



Malondialdehyde values in melanoma patients 

Lipid peroxidation, expressed as a MDA, was
significantly elevated in TMP (p=0.0008), I+II
(p=0.0058), III (p=0.0050) and IV (p=0.0033)
compared to controls (Figure 5). Patients in group IV
had significantly higher MDA than in group I+II
(p=0.0282) and III (p=0.0299). The highest MDA
was in group IV.

Correlations between parameters of OS

Negative correlation between O2
•- and CAT,

O2
•- and tSOD, O2

•- and Mn-SOD; and positive
between CAT and tSOD, CAT and Mn-SOD, tSOD
and Mn-SOD were obtained in early stage of disease
(I+II) (Table I), while no correlation was obtained in
the middle and later stages (III+IV). 

Discussion

Cutaneous malignant melanoma develops in
three different stages, from radial to vertical growth
phases and metastatic disease. Clinically, radial growth
phase presents as patches or plaques, this is an early
melanoma stage (stage I+II, according to the AJCC).
Melanoma cells show radial spread, usually confined
to the intra-epidermal compartment, while melano -
ma’s mitosis are frequently seen in the epidermis but
rarely in the dermis (20). Vertical growth phase of
melanoma refers to gray-black, blue-black or even
amelanotic nodules and is classified as an early and/or
a late stage (stage III, according to the AJCC). In an
early stage, a small papulonodule arises in a radial
growth phase lesion and is usually darker than radial
growth phase associated lesions, whereas in a late or
developed vertical may be present and tumor aggre-
gates may extend into the reticular dermis or even
subcutaneous fat (20). The terminal phase of mela -
noma progression assumes distant metastasis expan-
sion (stage IV, according to the AJCC).

Positive association between OS and clinical
stages of melanoma progression is confirmed by our
study. Oxidative stress-associated diseases, including
melanoma, underline cross-reactions between over-
produced FRs and immune responses, in humans
(21–25). Regulatory mechanisms of OS on tumor
growth and progression comprise genomic instability,
oncogene activation and angiogenesis (26). It was
shown that ROS alter proto-oncogene B-Raf that
encodes B-Raf protein (BRAF), a known activator of
mitogen-activated protein kinase (MAPK) pathways
and suppress apoptosis (27). High ROS levels inacti-
vate p53 (tumor suppressor gene and regulator of
apoptosis) which leads to inhibition of apoptosis (28).
Also, ROS can directly activate MAPK pathways lead-
ing to aberrant activation of nuclear factor-kappa B
(NF-B), which in turn induces expression of proto-

oncogenes such as c-fos, c-jun and c-myc, that leads
to cell proliferation and blocking of apoptosis (29,
30). Notable, ROS promote many aspects of tumor
development and progression including: (a) cellular
proliferation e.g. extracellular-regulated kinase 1/2
(ERK1/2) activation; (b) evasion of apoptosis e.g. Src,
NF-B and phosphatidylinositol-3 kinase (PI3K)/Akt
activation; (c) tissue invasion and metastasis e.g. met-
alloproteinase(MMP) secretion into the extracellular
matrix (ECM); and (d) angiogenesis e.g. release of
vascular endothelial growth factor (VEGF) and
angiopoietin (31).

Overproduction of ROS is necessary but not suf-
ficient to induce malignancy. Free radicals readily
attack all classes of biomolecules (proteins, DNA,
unsaturated fatty acids) and cause toxic and/or muta-
genic effects. In reaction with DNA, ROS induce
base-oxidation and deamination, base loss, single
and double-strand breaks, crosslinks, deletion, muta-
tion, translocation. The consequences of oxidatively
damaged DNA are transcription blockage, replication
errors and genomic instability, which is the first step in
process of mutagenesis, carcinogenesis and aging
(32). Deteriorated protein's primary structure by ROS
causes modification and loss of some amino acids,
formation of S-S bridges and carbonyl groups, aggre-
gation and fragmentation, increased proteolytic sen-
sitivity, loss of catalytic function and changes in sec-
ondary and tertiary protein structure, affecting their
viscosity and charge (33). Changed secondary and
tertiary protein structure can induce cell death.
Protonated O2

•- form, perhydroxyl radical (HO2
•,

pKa=4.7) can abstract bis-allylic H+ from poly unsat-
urated fatty acids (PUFA) and triggers LPO, unlike
O2

•- itself. Hydrogen peroxide produced in the reac-
tion of O2

•- dismutation by SOD, easily diffuses
through cellular membranes and precedes the pro-
duction of the most potent hydroxyl radical (HO•) by
its homolytic cleavage or through Fenton reaction.
Conversion of H2O2 into water is catalyzed by CAT
primarily and glutathione peroxidase (GPx). If the pro-
duction of H2O2 overwhelms the activity of CAT and
GPx, it can participate in Fenton-like reactions togeth-
er with transitional metals, such as Fe2+ or Cu1+, giv-
ing rise to toxic HO• that imposes mutagenic effect in
reaction with DNA (34). Initiation, propagation and
termination of LPO comprise the formation of PUFA
radical (PUFA•), alkyl peroxyl (PUFA-OO•), alkoxy
(PUFA-O•) and alkyl hydroperoxides (PUFA-OOH),
which undergo-scission reactions or intramolecular
cyclisation, followed by the decomposition into car-
bonyls (including MDA) (35, 36). Malondialdehyde is
highly cytotoxic and it has been confirmed as a potent
enzymes inhibitor, tumor promoter and co-carcino-
genic (37).

Increased activity of CAT in TMP suggests a piv-
otal role of this enzyme against OS. The higher SOD
and CAT activities, seen in melanoma patients, corre-
sponded to ROS overproduction (increased O2

•-) and
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LPO (increased MDA), confirming that melanoma is
OS- associated disease (38).

Redox status differs across body organs/tissues
due to anatomical, blood supply status and other speci-
ficities (25). Sander et al. (39) reported on significantly
elevated antioxidant enzymes (CAT, SOD) activity and
MDA level in malignant tissues of melanoma patients.
They were the first who found the correlation between
melanoma and MDA in human skin in vivo.

Schadendorf et al. (40) reported on statistically
elevated serum Mn-SOD activity in all clinical stages
of melanoma, compared with controls (p < 0.005),
while in our study Mn-SOD activity was significantly
higher only in stage IV compared with control group
(Figure 3).

In line with our results regarding OS development
in melanoma patients are findings of other authors.
Accordingly, Gadjeva et al. (22) documented signifi-
cant increase of plasma MDA and CAT activity in
melanoma patients, as we found too, but significantly
low CuZn-SOD activity if compared with healthy con-
trols. Interestingly, they showed that plasma MDA levels
decreased after the surgery (removal of melanoma tis-
sues) indicating melanoma tissue as a significant FRs
producer, though activities of SOD and CAT remained
the same, as before the surgery. Mantovani et al. (41)
emphasized that OS development is associated with
insufficient antioxidative capacity in different types of
cancer, reporting on ROS overproduction, significantly
elevated CuZn-SOD (but not affected tSOD activity)
and reduced GPx activity (42).

Positive correlation between tSOD and CAT
activity was confirmed in the early stage patients

(stage I+II). It appears logical, because CAT follows
SOD catalyzed production of H2O2 (during O2

•- dis-
mutation). Negative correlations between O2

•- and
antioxidative enzymes: tSOD, Mn-SOD and CAT
allude to other O2

•- sequestration pathways that pre-
dominately occurs, than dismutation by tSOD and Mn-
SOD. This finding is in accordance with reports on
O2

•- and nitrogen monoxide radical reaction, when
harmful peroxynitrite is generated, which is three
times faster than O2

•- dismutation by SOD (43).

The observed changes in MDA and O2
•- levels

as well as the altered serum activities of the antioxi-
dant enzymes such as SOD and CAT in melanoma
patients, confirmed that melanoma is OS associated
disease. Deteriorated cell functioning at mitochondrial
level was confirmed by elevated Mn-SOD activity in IV
stage compared to early and middle stages (this may
be explanation why despite the increase in enzymatic
activity, the disease continues to develop). Taken
together, the results of our study could be useful in
assessing the defense system in melanoma patients
and for better understanding the role of OS in
melanoma progression.

The main limitation of this study include small
number of melanoma patients in late melanoma
stage (IV group), that is expected because of high
mortality rate.
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