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Summary: Decreased nitric oxide (NO) pr oduction and/or
impaired NO bioavailability may occur in patients with the
chronic kidney disease (CKD), and could contribute to eleva-
tion of blood pressure, cardiovascular disease (CVD) and pro-
gression of renal injury in these patients. F ree guanidino-
methylated arginine residues occur endogenously as a r esult
of proteolysis of post-translational methylated tissue proteins.
The asymmetric dimethyl ar ginine (ADMA) is a competitive
inhibitor of the nitric oxide synthase (NOS) enzymes. The kid-
ney has a predominant role in ADMA elimination by combin-
ing two mechanisms; urinary excretion and metabolization of
ADMA The degradation of ADMA is accomplished intracellu-
larly by the enzyme dimethylarginine dimethylaminohydrolase
(DDAH). ADMA is not only a ur emic toxin, but also a strong
marker of the endothelial dysfunction and atherosclerosis and
a stronger independent predictor of all-cause mortality and
cardiovascular outcome in patients with the chronic renal fail-
ure. There are at least four mechanisms that may explain the
accumulation of ADMA in CKD: incr eased methylation of
proteins, increased protein turnover, decreased metabolism
by DDAH and impaired renal excretion. A strong positive cor-
relation between symmetric dimethyl ar ginine (SDMA) and
creatinine suggests that SDMA might be of value as a mark-
er of the renal function. Reduced NO elaboration secondary
to accumulation of ADMA and elevated inflammation may be
important pathogenic factors for endothelial dysfunction in
patients with the renal disease. Elevation of ADMA may be a
missing link between CVD and CKD.
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Kratak sadr’aj: Smanjenje koncentracije NO i/ili nedo-
voljna raspolozivost ovog molekula kod pacijenata sa
bubreznim bolestima moze biti razlog poveéanja kr vhog pri-
tiska, kardiovaskularnih bolesti (KVS) i progresije bubreznog
ostecenja. Metilarginini nastaju u pr ocesu proteolize post-
translaciono metilisanih ar gininskih rezidua u pr oteinima.
Asimetri¢ni dimetilarginin (ADMA) je kompetitivni inhibitor
azot oksid sintaze (NOS). Najvaznija uloga bubr ega u elimi-
naciji ADMA podrazumeva procese urinarne ekskrecije i raz-
gradnju pod uticajem dimetilar ginin dimetilaminohidrolaze
(DDAH). Na aktivnost DD AH uti¢u oksidativni str es i infla-
macija. ADMA nije samo ur emijski toksin ve¢ i znacajan
marker endotelne disfunkcije i ater oskleroze, kao i nezavisni
prediktor mortaliteta i kardiovaskularnih bolesti kod pacijena-
ta sa HBI. Osnovni uzroci koji dovode do akumulacije ADMA
su povecana metilacija pr oteina, njihov poveéan metabo-
lizam, smanjena aktivnost DD AH ismanjena urinar na
ekskrecija. Klirens simetri¢nog dimetilar ginina (SDMA) u
plazmi zavisi samo od r enalne funkcije (pozitivna kor elacija
sa kreatininom) i njena akumulacija pr edstavlja nespecifi¢ni
indikator uremijskih toksina. R edukovana koli¢ina NO
pracena akumulacijom ADMA, udr uZena sa inflamacijom
moze biti vazan patogeni faktor endotelne disfunkcije kod
bubreznih pacijenata. Porast koncentracije ADMA moze biti
veza izmedu KVS i HBI.

Klju~ne re~i: azot monoksid (NO), asimetri¢ni dimetil
arginin (ADMA), bubrezne bolesti, endotelna disfunkcija
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Introduction

Patients with chronic kidney disease (CKD) rep-
resent an important segment of the population
(7-10%) and, mostly because of high risk of the car-
diovascular complications associated with the r enal
insufficiency, detection and treatment of CKD is now
a public health priority . Despite constant impr ove-
ments in dialysis technology and renal care, the mor-
tality rate is still high in hemodialysis patients. Ratients
with the end-stage renal disease (ESRD) have 10-20
fold higher car diovascular disease (CVD) mortality
than patients in general population (1-6). These cir-
cumstances have led to the research of traditional as
well as nontraditional risk factors as potential pr edic-
tors of mortality in patients on dialysis. Among nu -
merous risk factors, the inhibitors of the nitric- oxide
(NO) synthesis deserve special attention, because ESRD
patients are characterized by the accelerated ather o-
sclerosis (7). Asymmetric-dimethylarginine (ADMA) is
derived largely from the degradation of proteins con-
taining methylated arginine residues and it has been
recognized as unique endogenous competitive in hi-
bitor of the nitric-oxide synthase. Approximately 20%
of ADMA is cleared by the kidney, whereas the resid-
ual is metabolized by the enzyme dime thylarginine
dimethylaminohydrolase (DDAH).

NO and endothelial dysfunction

The endothelium plays a cr ucial role in the
maintenance of vascular tone and str ucture. One of
the major endothelium-derived vasoactive mediators
is nitric oxide (NO), which is formed from amino acid
precursor L-arginine by nitric oxide synthase (NOS)
(8). NO is the most potent endogenous vasodilator
known, exerting its effect via stimulation of soluble
guanylate cyclase to produce cyclic GMP (9). NO is a
critical modulator of blood flow and blood pr essure
(10). NO is involved in a wide variety of r  egulatory
mechanisms of the car diovascular system (CV), in -
cluding vascular tone (i.e., it is the major mediator of
the endothelium dependent vasodilation) and vascu-
lar structure (e.g., inhibition of the smooth muscle
cell proliferation), and cell-cell interactions in blood
vessels (e.g., inhibition of the platelet adhesion and
aggregation, inhibition of the monocyte adhesion).

NO has been summarized as an endogenous
antiatherosclerotic molecule. Ather osclerosis is a
process initiating in the endothelium which may be
caused by several vasculotoxic factors. T raditional
(Framingham) risk factors like age, sex, smoking, lef t
ventricular hypertrophy (LVH), dyslipidemia and dia-
betes undoubtedly give an important contribution to
high CV mortality of dialysis patients (11). In r ecent
years, much attention has been focused on factors
peculiar to end-stage renal disease (ESRD), like ane-
mia, hypoalbuminemia, hyperparathyr oidism and

hyperphosphatemia, and some emer ging risk factors
like inflammation and hyperhomocysteinemia (12).

A chronic deficiency or loss of NO activity may
contribute to medial thickening and/or myointimal
hyperplasia (13). A loss of NO activity occurs early in
the course of human vascular disease (14) and it is
a contributing factor to abnor mal vasomotion and
ischemic symptoms. In addition, there is an accumu-
lating evidence that NO deficit participates in the ini-
tiation and progression of atherosclerosis.

ADMA: synthesis and elimination

Methylarginines constitute a class of substances
formed by posttranslation methylation of the arginine
residues in proteins which are subsequently liberated
in biological fluids following proteolysis (15). Some of
them like endogenous inhibitor of NOS, asymmetric
dimethylarginine (ADMA) and L -NG-monomethyl
arginine (LNMA) compete with L -arginine for the
active sites of this enzyme, while symmetric dimethy-
larginine (SDMA) can impair NO bioavailability by
competing with L-arginine for cellular uptake by y+
transporter for cationic amino acids (16). L -Arginine
metabolism is complex and tightly controlled (17).

Proteins that have been posttranslationally met -
hylated and subsequently hydrolyzed are found large-
ly in the nucleolus and appear to be involved in RNA
processing and transcriptional contr ol (18). Protein-
arginine methyltransferases (PRMTs) catalyze the for-
mation of methylar ginine residues (19, 20). These
enzymes are classified into type | (PRMT1, PRMT3,
PRMT4, PRMT6 and PRMT8) and type Il (PRMTS5,
PRMT7 and FBXO10). Type | PRMTs produces ADMA,
while type Il PRMT s produces SDMA (21). PRMT
activity is influenced by the oxidized lipopr oteins in
vitro (22), and PRMT | expression in endothelial cells
and, thereby ADMA level incr eases in r esponse to
shear stress (23).

After proteolytic degradation of methylated pro-
teins, NMA, SDMA or ADMA are released and in part
cleared by renal excretion (24). In addition, ADMA,
but not SDMA, is degraded in liver, kidney and other
organs into citrulline and dimethylamines by dimethy-
larginine dimethylaminohydrolases (DDAH) (25). It
has been estimated that in humans, appr oximately
300 mol of ADMA is generated per day; appr oxi-
mately 250 pmol of which is metabolized by DD AH,
whereas only a minor amount is excreted unchanged
by the kidneys (26). This cellular pathway disposes
over 2/3 of daily ADMA pr oduction, while SDMA is
not a substrate for DDAH and it is eliminated almost
exclusively via renal route (24). Because ADMA levels
are elevated in patients with ESRD, renal excretion of
ADMA was considered to be the main route of elimi-
nation (27). The kidney has a pr edominant role in
ADMA elimination by combining two mechanisms;
urinary excretion and metabolization of ADMA.
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DDAH - key enzyme in ADMA level

The central role of DDAH in regulating plasma
ADMA levels was shown by using the DDAH inhibitor.
Pharmacological inhibition of DDAH activity with S-2-
amino-4 (3-methylguanidino) butanoic acid causes
ADMA accumulation and ther eby induces dose-
dependent vasoconstriction of the isolated vascular
rings in vitro that could be reversed by the addition of
L-arginine (28). Degradation of ADMA by DD  AH
probably involves a nucleophilic attack on the guani-
dino portion of the molecule by a cysteine held in an
activated state in the tertiary structure of the enzyme
(29). Many factors, such as oxidized low -density lipo-
protein cholesterol, inflammatory cytokines, hyper -
homocysteinemia, hyperglycemia, infectious agents,
and high doses of erythropoietin, have been shown to
attenuate DDAH activity, allowing ADMA to accumu-
late and block NO synthesis (30).

The finding that DD AH and NOS ar e co-local-
ized in endothelial cells within the glomer ulus and in
renal tubular cells supports the hypothesis that the
intracellular ADMA concentration is actively regulated
in NO generating endothelial cells within the kidney
as well (25, 31). Two isoforms of DDAH have been
characterized and cloned: DDAH 1 is found in tissues
that express neuronal NOS, wher eas DDAH Il is
found in tissues that expr ess endothelial NOS (32).
DDAH | is encoded by genes on chromosome 1, and
DDAH 2, by genes on chromosome 6 (33).

The role of ADMA

Data from several experimental studies suggest
that ADMA concentrations in a pathophysiologically
high range (between 2 and 10 mmol/L) significantly
inhibit vascular NO production (34).

Furthermore, ADMA competes (to a lesser
degree than SDMA) for L-arginine transport mediated
by human cationic amino acid transporter -2B into
cells, resulting in L-arginine depletion (35). However,
pharmacological ADMA concentrations are necessary
to exert this effect in vitro (36). A broad range of plas-
ma ADMA levels in pathophysiological situations is
one reason why the possible role of ADMA in cardio-
vascular disease is still considered controversial (37).

Acute systemic administration of a suppr essor
dose of the ADMA to healthy subjects decreased NO
generation, renal perfusion, and sodium excr etion
without affecting the r enin-angiotensin system and
sympathetic activity.

ADMA decreases effective r enal plasma flow
and increases renovascular resistance in a dose-relat-
ed manner. Moreover, administration of ADMA caus-
es significant sodium r etention and blood pr essure
increase.

The role of SDMA

The ADMA enantiomer SDMA is clear ed from
the circulation almost exclusively by the kidney and it
is a strong marker of the GFR (38). SDMA failed to
predict death and clinical outcomes in the sole study
testing the relationship between this methylar ginine
and survival in ESRD patients (39). Experimental
studies indicate that SDMA competes with L-arginine
for the cell transport system which dose-dependently
inhibits NO synthesis (35). On the other hand, elevat-
ed SDMA cor relates better with or gan failure than
ADMA in the intensive care patients (40) and SDMA
was shown to add risk prediction in patients with low
ADMA concentration (41). Plasma SDMA clearance
depends mainly on renal function (38) and, therefore,
accumulation of this substance is an unspecific indi-
cator of the ur emic toxins accumulation, suggesting
that the Hb—SDMA association may r eflect the influ-
ence of uremic toxins on Hb levels.

ADMA and kidney

Malnutrition and enhanced protein turnover, i.e.
two main drivers for the enzymes that synthesize
ADMA and SDMA (42) ar e common in ESRD and
these alterations ar e associated with the oxidative
stress (43), a factor which inhibits DD AH and hence
ADMA degradation in ESRD. The ADMA-SDMA link
in ESRD r eflects the combined effect of a shar ed
stimulus for biosynthesis (protein degradation) and of
markedly impaired removal due either to oxidative
stress (ADMA) or abolished r enal function (SDMA).
Due to its much higher concentration in plasma and
biological fluids in r enal failure, SDMA is a str onger
competitor than ADMA for L -arginine entry into the
cell and hence a stronger factor limiting the intracel-
lular availability of this amino acid for NO synthesis.
However, ADMA but not SDMA, was associated with
the circulating L-arginine levels in ESRD patients. This
finding, which specifically r eplicates in the dialysis
population with previous observations in young gen-
eral population (44) and in essential hypertension
(45), may underlie a regulatory mechanism.

In vivo, supplementing L-arginine and ther eby
increasing the L-arginine/ADMA ratio, a key determi-
nant of NOS activity (46), has been shown r epeated-
ly to increase NO production. This phenomenon has
been named the L-arginine paradox (47). In patients
with the uremia, this seems to be even mor e impor-
tant, because urea inhibits the cell L -arginine trans-
porter in vitro at concentrations commonly obser ved
in uremic patients (48). R ecent advent of gene-
manipulated mice either overexpressing (31) or delet-
ing DDAH (49) will help to further elucidate the
pathophysiologic role of ADMA in r enal disease and
will hopefully help to generate new opportunities for
intervention in renal disease progression. Based on
the generation and metabolism of ADMA, elevated
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levels are the consequence of the increased synthesis
(enhanced activity or expression of PRMTs), reduced
renal clearance orr educed enzymatic degradation
(decreased activity or expr ession of DDAH). The lat-
ter two mechanisms have been shown to contribute to
elevations of ADMA in renal disease whereas the role
of PRMT under this condition remains unknown.

ADMA, inflammation and kidney

Chronic kidney disease (CKD) has gained much
attention as a major health problem. Studies involving
CKD patients on maintenance dialysis have shown
that these patients are also subjects to chronic inflam-
mation (50). This situation is evident with the increas-
es of proinflammatory cytokines, such as interleukin
(IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-a.),
which are also involved in the pathogenesis of the
uremic cachexia (51, 52). In addition, loss of appetite
and malnutrition are not rare in these patients, pr e-
senting with the incr eased inflammatory activity. It
has been reported that both CKD and inflammation
give rise to endothelial dysfunction thr ~ ough the
increased levels of the asymmetric dimethylar ginine
(ADMA) (53). The additive effect of dialysis therapy
on ongoing inflammatory and oxidative state has also
been demonstrated (54).

Elevated plasma CRP levels positively cor related
with the plasma urea levels in HD patients. This find-
ing suggests that the uremia itself might be associated
with an elevated inflammation which may contri bute
to development and pr ogression of ather osclerosis.
CRP and ADMA may emerge as important risk factors
for atherosclerosis in dialysis patients. R educed NO
elaboration secondary to accumulation of ADMA and
elevated inflammation may be important pathogenic
factors for endothelial dysfunction in dialysis treatment
strategies. However, we suppose that the cor relation
between activated acute phase and mortality will be
strengthened by using two or mor e measurements of
CRP over time. Patients whose CRP levels remain ele-
vated over time would be expected to have an even
higher mortality than patients with the occasionally
elevated CRP levels (55).

ADMA as cardiovascular risk factor in
patients with ESRD

Depending on age, patients on r enal replace-
ment therapy encounter 5- to 500-fold higher risk of
dying from cardiovascular events. The overall produc-
tion of nitric oxide (NO) is decr eased in chronic kid-
ney disease (CKD), which contributes to cardiovascu-
lar events and further pr ogression of kidney damage
(56). There are many likely causes of NO de ciency
in CKD and the areas surveyed are:

1. Limitations on substrate (L-arginine) availabil-
ity, probably due to impaired renal L-arginine

biosynthesis, decreased transport of L -argi-
nine into endothelial cells and possible com-
petition between NOS and competing meta-
bolic pathways, such as arginase.

2. Increased circulating levels of endogenous
NO synthase (NOS) inhibitors, in particular
asymmetric dimethylarginine (ADMA). There
are at least four possible mechanisms that
may explain the accumulation of ADMA in
CKD: (i) incr eased methylation of pr oteins;
(i) increased protein turnover; (iii) decreased
metabolism by DDAH; and (iv) impair ed re-
nal excretion.

Observations by Kielstein et al (57) in 1999
refreshed the interest in the potential role of ADMA in
accelerated atherosclerosis in patients with ESRD.
This cross-sectional study was the first to document
that ADMA levels ar e higher in dialysis patients with
than without car diovascular complications. It is well
documented that plasma ADMA concentration is
associated with the carotid intima-thickness (58, 59),
left ventricular hypertrophy (60), and car diovascular
complications. ADMA plasma concentration was
much higher in patients with concentric L VH than in
those with eccentric LVH or normal LV mass (61, 62).
Several studies have confirmed that ADMA is an inde-
pendent predictor of all-cause mortality and CVD
mortality in patients with ESRD (63) and peripheral
arterial disease (64). V ery recently, it was r eported
that the cir culating levels of ADMA cor relate inde-
pendently with measur es of disease severity and
major adverse cardiovascular events (65).

Our data shows that ADMA is an independent
and better marker of all-cause and car  diovascular
mortality than CRP. This 14-month follow -up study
indicates that ADMA is a str onger predictor of all-
cause mortality than SDMA and CRP in patients with
the end-stage renal disease (66).

ADMA and transplantation

Posttransplant cardiovascular mortality is still an
important problem inr enal transplant patients.
Dimethylarginine metabolism is also of outstanding
interest in the context of transplantation, pr edomi-
nantly because the NOS isofor ms, endothelial NOS
(eNOS) and inducible NOS (iNOS), play pr otective
and deleterious roles in the acute and chr onic allo-
graft rejection (67-69). An important hallmark of
the chronic rejection of kidneys is the development of
allograft vasculopathy, a severe intimal hyperplasia of
the renal arteries. The r esults indicate that elevated
plasma level of ADMA is associated with the
increased morbidity, mortality, and the deterioration
of graft function in r enal transplant recipients (70).
Transplanted kidneys ar e prone to oxidative str ess-
mediated injury by pre-transplant and post-transplant
conditions that cause reperfusion injury or imbalance
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between the oxidants and antioxidants. Oxidative
stress can also be caused by the immunosuppr essive
therapy. Our findings suggest that r enal transplant
recipients display persistent oxidative stress. No signif-
icant differences in the oxidative str ess parameters
were found in respect to treatment (71).

Clinical and experimental data evidenced that
dimethylarginines contribute to car diac allograft vas-
culopathy (72), which r esembles vasculopathy of
renal allografts (73). Dimethylar ginines may play a
role in triggering the chronic rejection, but a contribu-
tion to the pr ocess of vascular r emodelling itself is
improbable. In contrast, differential arginine methyla-
tion by PRMT1 may be involved in pathogenesis of
the acute and chronic rejection. When increased soon
after transplantation, ADMA may be associated with
the episodes of the acute r ejection in kidney trans-
plant recipients. The presence of an elevated systolic
blood pressure, as well as CRP and ADMA levels, sug-
gested a role for endothelial dysfunction in the devel-
opment of the acute r  ejection episodes among
deceased donor kidney transplant r ecipients (74).
Shortly after renal transplantation and r ecipient
nephrectomy, ADMA and SDMA are increased, even
in the absence of the acute rejection. Cardonuel et al.
(75) demonstrated in vitro that the L -arg/dimethy-
larginine ratio must at least decr ease to 10 to elicit
the physiological effect, and experiments in vivo
demonstrated that elevated ADMA levels do not nec-
essarily result in the impair ed NO production (76).
These data suggest that DD AH function is r estored
within 4 days. W e conclude that changes in ADMA
levels are not due to impair ed renal degradation.
DDAH activity, however, may change in other organs,
such as liver.
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