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Reactive species and oxidative stress

Reactive species (RS), a diverse group of hetero-
genic chemical compounds, consist of free radicals
(FR) and non-radicals. Non-radical compounds, such
as hydrogen peroxide (H2O2) and peroxynitrite

(ONOO–) ions, do not have unpaired electrons in their
outer orbit but react similarly to FR and support red-ox
reactions of RS in the body (1–3). However, FR repre-
sent the main class of RS (4). Depending on which
atom is in the active centre, RS are divided into cate-
gories: reactive oxygen species (ROS); reactive nitro-
gen species (RNS); reactive carbon species (RCS) and
reactive sulfur species (RSS) (Table I). 

Free radicals are molecules, atoms or ions with
unpaired electrons in the outer orbit, which act as oxi-
dants due to their tendency to couple such electrons.
The electrophillic properties of FR form the basis for
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Kratak sadr`aj: Pove}ano stvaranje slobodnih radikala i/ili
nedovoljna antioksidativna za{tita dovodi do oksidativnog
stre sa (OS) u }eliji. Produ`eni i/ili sna`an oksidativni insult
prevazilazi }elijski antioksidativni odbrambreni ka pacitet,
dolazi do o{te}enja makromolekula, gubi se }elijska funkci-
ja, o{te }uju se membrane, {to sve zajedno dovodi do smrti
}elije. Stanja organizma kao {to su pove}ana fizi~ka aktiv nost,
izlo ̀enost zaga|enju ~ovekove okoline, ksenobioticima,
pu{enje itd. rezultiraju OS. Oksidativni stres, kao patofiziolo -
{ki mehanizam, je potvr|en u brojnim patologijama, trovanji -
ma i starenju. Reaktivne kiseoni~ne vrste i reaktivne azoto ve
vrste, endogenog ili egzogenog po rekla, mogu lako da na -
padnu sve klase biomolekula (proteni, DNK, ne za si}e ne
masne kiseline). Naru{en oksido-reduktiv ni milje, koji po -
sreduje po ve}anju lipidne peroksidacije, pro meni aktivnosti
direktnih ili indirektnih antioksidativnih enzima, kao i sma -
njenom sa dr`a ju neenzimskih antioksidanasa, mo`e biti pre-
poznat u pre simptomatskoj fazi brojnih bolesti. U tom smis-
lu mo`e biti pokazatelj izmenjenih metaboli~kih i funkcional-
nih zbivanja. U svakodnevnoj klini~ko-dijagnosti~ koj praksi
analize parametara OS u biolo{kom materijalu bi trebalo da
imaju svoje mesto, radi rane dijagnoze bolesti, prevencije i
unapre|iva nja terapije. 
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Summary: Elevated free radical production and/or insuffi-
cient antioxidative defense results in cellular oxidant stress
responses. Sustained and/or intense oxidative insults can
overcome cell defenses resulting in accumulated damage to
macromolecules, leading to loss of cell function, membrane
damage, and ultimately to cell death. Oxidative stress (OS)
can result from conditions including excessive physical stress,
exposure to environmental pollution and xeno biotics, and
smoking. Oxidative stress, as a pathophysiological mecha-
nism, has been linked to numerous pathologies, poisonings,
and the ageing process. Reactive oxygen species and reactive
nitrogen species, endogenously or exogenously produced,
can readily attack all classes of macromolecules (proteins,
DNA, unsaturated fatty acid). The disrupted oxidative-reduc-
tive milieu proceeds via lipid peroxidation, altered antioxida-
tive enzyme activities and depletion of non-enzymatic endo -
genous antioxidants, several of which can de detected in the
pre-symptomatic phase of many diseases. Therefore, they
could represent markers of altered metabolic and physiolo -
gical homeostasis. Accordingly, from the point of view of
routine clinical-diagnostic practice, it would be valuable to
routinely analyze OS status parameters to earlier recognize
po tential disease states and provide the basis for preventative
advance treatment with appropriate medicines.
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their high reactivity. In reactions with FR, bio-molecules
undergo oxidation and, through donation of their own
electrons, they themselves become new »secondary«
ra  dicals that continue radical chain reactions and sup-
port spatial and time-dependent oxidative stress (OS)
pro pagation and consequently lead to cell/tissue da -
mage (1, 5).

Free radicals can be formed: 1) endogenously: a)
phy siologically, primarily as minor unavoidable by-pro d -
ucts of the mitochondrial electron transport chain dur-
ing cell respiration; b) through inflammatory pro cesses,
ischemia/reperfusion injury and chronic diseases such
as atherosclerosis and cancer; c) via metal-catalyzed
oxi dation; or 2) exogenously during: a) exposure to
envi ron mental pollution and adverse conditions (ionisa-
tion, UV radiation, smoking); b) xenobiotic me ta bolism
(6–9).  

Under physiological conditions, FR concentra-
tions are kept at low concentrations. However, their
concentrations can acutely increase during numerous
cell processes including erythropoesis, respiratory con-
trol and during signal transduction pathways stimulated
by diverse growth factors and cytokines.

When present at high concentrations FR can
directly (and indirectly) affect proteins, lipids and chro-
matin and can alter signal transduction pathways and
gene expression. As their effects are diverse they can
contribute to promote pathophysiological processes in
the body. 

Oxidative stress is a condition caused by an imba -
lance in RS production and the biological system’s abi -
lity to detoxify the reactive intermediates and repair the
resulting damage (10). Increased FR generation which
exceeds the capacity of the antioxidative defense sys-
tem (ADS) results in OS. Depletion of energy and re -
ductive equivalents is a consequence of increased ADS
activity during OS (11).

Oxidative stress often causes the disintegration of
cell membranes, changes cellular morphology and
function and is a prelude to cell death. 

A growing body of evidence concerning oxidative
damage to macromolecules by highly reactive FR
under lines the contribution of OS as a component in
pathophysiological mechanisms (12–14).

The involvement of RS has been identified in
many pathologies (degenerative diseases, malignancy,
diabetes mellitus, cardiovascular diseases based on ath-
erosclerotic changes, and chemical poisoning), but
also in physiological processes of ageing and apoptosis
(12–17).

Antioxidative defense system

The ADS consists of several levels of protection
(18):  

Primary (enzymes which sequester FR: superox-
ide dismutase (SOD), catalase (CAT), glutathione per-
oxidase (GPx), glutathione reductase (GR) and non-
enzymatic components (including glutathione (GSH),
ascorbic acid, b-carotene, a-tocopherol) (19–23); 

Secondary (specific oxidoreductase: thiol trans-
ferases, protein-ADP-ribosyltransferases and ATP and
Ca2+ independent transferases; pigments (including
melanin); and additionally some stable lipid modifica-
tion such as low density lipoproteins, (LDL); 

Tertiary (proteins that chelate transition metals,
such as ceruloplasmin, the major copper-containing
protein in plasma and apoferritin, a molecule that
chelates about 4300 atoms of iron to form ferritin, a
significant iron-containing protein).

The reactions forming part of the ADS are direct-
ed to different levels of cell defense with the ultimate
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Table I Reactive species.

Figure 1 Mechanism of free radical effects.
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aim to protect cells from oxidative injury. The ADS
maintains cellular homeostasis by preventing FR pro-
duction, sequestering existing FR inactivating FR, pro-
viding sufficient reducing equivalents and repairing
damaged cells and intracellular components (20). The
main criterium for determining whether a compound is
an antioxidant is if it has the ability to delay or to pre-
vent substrate oxidation and if FR show a greater affin-
ity to react with the potential antioxidant compared
with the substrate (10). 

Oxidative injury of macromolecules 

Free radicals can readily attack all classes of ma -
cromolecules (proteins, DNA, unsaturated fatty acids)
and have long been recognized as potential contribu-
tors to oxidative damage (21, 24, 25).  

Oxidative damage of lipids

Lipid peroxidation (LP) occurs through one-elec-
tron reduction reactions between FR and unsaturated
fatty acids (27, 28). 

Potent FR such as HO. and heme proteins
(hemoglobin or methemoglobin) trigger LP by abstract-
ing hydrogen and an electron from the methylene
group of unsaturated fatty acids generating a lipid rad-
ical (R.) which in turn reacts with molecular oxygen
(O2) to form a lipid peroxyl radical (ROO.). The forma-
tion of LP products, considered secondary radicals,
facilitates the propagation of FR chain reactions and
the spreading of oxidative tissue injury. Generated LP
products (R.; RO.; ROO.; ROOH) react with cell
macromolecules, similarly to the primary initiating oxi-
dant radicals (O2

.–; HO.; H2O2).

Target cell structures susceptible to LP are cell
membranes, lipoproteins [especially low-density lipo -
proteins (LDL)] and molecules containing lipids.

Decomposition products of LP whether originat-
ing from the breakdown of free fatty acids or from the
fatty acyl moieties of phospholipids appear to have an
array of biological effects that can be related to their
reactivity with proteins, DNA, and thiol compounds,
and, in the case of phospholipid aldehydes, to natural
agonists via cell signaling pathways. Lipid hydroperox-
ides may react with proteins via the addition of the per-
oxy radical to free amino groups, including those found
in phosphatidylethanolamine (29).

Various carbonyl products arise from these
decomposition reactions and are characterized as oxo-
compounds and alkyl or alkenyl radicals. These chain-
cleavage products are, in part, comprised of reactive
aldehydes, which play a significant role in the biologi-
cal effects of lipid peroxidation. The major decomposi-
tion products of LP are aldehydes: malondialdehyde
(MDA) and 4-hydroxynonenal (HNE). MDA originates

from the breakdown of unsaturated fatty acids, pre-
dominantly arachidonic acid and when present at high
concentration readily reacts with free amino groups
[with the e-amino moieties of lysine residues in apoB-
100 (protein with 4536 amino acids residues) of LDL]
(30). The bicyclic peroxide intermediates of linolenic
and arachidonic acids give rise to MDA, commonly
detected as thiobarbituric acid reacting substances (31,
32). HNE originates from the breakdown of w-6 fatty
acids (arachidonic, linoleic and linolenic acid). It is a
toxic non-volatile aldehyde that electrophilically attacks
thiols (Michael addition forming a glutathionyl adduct -
hemiacetal rearrangement) and the e-amino moieties
of proteins (especially lysines) (33, 34). Both reactions
are reversible, although reaction products with thiols
are more stable. By reacting with several classes of bio-
molecules such as proteins, phospholipids and nucleic
acid, HNE exerts multifaceted toxi city (cytotoxic, muta-
genic, genotoxic) (35).

Hydroperoxide and alkoxyl radical forms of
polyunsaturated fatty acids can, under appropriate con-
ditions (for example the absence of metal catalysts),
undergo intramolecular rearrangement reactions yield-
ing epoxy-alcohols, diols, and ketones, while reactions
subsequent to the rearrangement of alkoxy radicals can
give rise to epoxyalcohols, ketones and alcohols (by
radical disproportionation), and epoxy-ketones (36).
Some of these epoxy-fatty acid products have been
shown to have unique biological activities, as in the
case of arachidonic acid epoxide formed by cyto chro -
me P-450 (37). Isoprostanes are products of endocy-
clization of w-6 fatty acid radical intermediates which
can react with oxygen to form bicyclic endoperoxides
(dioxans and dioxolanes, so-called diperoxides) bearing
a variety of structures (64 isomers), or undergo elimi-
nation reactions analogous to that of prostaglandin
synthase (38, 39). The formation of isoprostanes has
recently been shown to be an important pathway for
lipid peroxidation in vivo (40). In the presence of phos-
pholipase A2 isoprostanes are released from phospho-
lipids and enter into the body's fluidic compartments.
F2-isoprostanes are considered to be valid markers of
LP and related to their chemical characteristics (stable
and not dependent on daily lipid intake) with no signi -
ficant inter-individual nor daily variation in its concen-
tration and can be determined by a non-invasive
method in urine or exhaled air (41). F2-isoprostanes
are similar to prostaglandin H2 (PGH2).  

The conversion of arachidonic and linoleic acids
to eicosanoids, along with other polyunsaturated fatty
acids, is primarily catalyzed by various lipoxygenases
(proteins with stereospecific dioxygenase activity)
whose activity is influenced by the re-dox status of the
cells. Enhanced lipoxygenase activity may occur
through gradual accumulation of hydroperoxides via
the enzymes own action, by chemicals that stimulate
lipid peroxidation or by disruption of membranes from
which lipoxygenase substrates are derived. Membrane
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disruption permits lipoxygenase to directly oxidize
unsa turated fatty acyl moieties in phospholipids or
attack substrates that are released through activation of
phospholipases (42, 43). 

Phospholipase activation may occur during signal
transduction leading to elevations in the intracellular
calcium ion concentration and enzyme phosphoryla-
tion mediated by protein kinase activation (44, 45). 

The release of unsaturated fatty acids from phos-
pholipids represents a potential mechanism for phos-
pholipase A2-mediated lipoxygenase activation. A
reverse situation for enzymatic peroxidation of mem-
brane phospholipids followed by phospholipase-medi-
ated degradation may also be brought about via the
activation of 15-lipoxygenase (46). Excessive produc-
tion of 15-lipoxygenase products has been found dur-
ing septic shock (47), ischemia/reperfusion and ather-
osclerosis.

The propagation of LP, followed by metabolic
changes, can overcome the cell’s defenses. However,
the extent to which LP contributes to pathologies
depends on the source (endogenous or endogenous
origin) that triggers the FR chain reaction.

Lipid peroxidation may be of questionable impor-
tance in biological systems, although the Fenton reac-
tion may occur in lipid environments within membranes
(48). It is likely that transition metals do not exist in nor-
mal tissues at micromolar concentrations that are
required to produce sufficient HO• to induce LP in cell
membranes.

Oxidative damage of proteins

Protein modification has been observed in nu -
merous diseases and conditions (49–51).

It is a more sensitive parameter of oxidative mo -
dification compared to LP. Protein modification specifi-
cally changes the protein's primary structure causing
biological consequences such as the modification and
loss of some amino acids, the formation of S-S bridges
and carbonyl groups, aggregation and fragmentation,
increased proteolytic sensitivity, loss of catalytic func-
tion; and changes in secondary and tertiary protein
structure, which can affect viscosity and charge (52,
53). 

Exposure of proteins to ROS leads to modification
of amino acid side chains, conversion of proteins to
higher molecular weight forms (protein-protein cross-
linking) and fragmentation of polypeptide chains
(54–56). 

Protein modification by different RS exhibits a
high degree of specificity and is divided into three cat-
egories according to chemical structure of the amino
acids affected: modification of sulfur-containing amino
acids, modification of aromatic and heterocyclic amino

acids and modification of the aliphatic amino acids
(57–60).

Modification of sulfur-containing amino acids

The two sulfur-containing amino acids sensitive to
oxidative modification are cysteine and methionine. 

Cysteine undergoes intra- or inter- protein disul-
fide cross-linked modification and may also form mixed
disulfide adducts of glutathione and, in some cases, be
converted to higher states of oxidation, namely, sulfinic,
sulfenic, and sulfonic acid derivatives (61). Peroxynitrite
converts them to S-nitrosothiol deri vatives (storage
and/or transfer of NO equivalents) (62–65).

Upon ROS attack methionine is converted to
methionine sulfoxide (MeSOX) and occasionally to
methionine sulfone (54, 55, 66–68). Disulfide forms of
cysteine residues and MeSOX residues are the only
ROS-mediated modifications of proteins that can be
reversed. The regeneration of methionine and cysteine
from their oxidized counterparts is mediated by the
action of NADPH-dependent dehydrogenases.

Modification of aromatic and heterocyclic
amino acids

Histidine and tryptophan residues are particularly
sensitive to oxidative modification. When proteins are
exposed to ionizing radiation or to high concentrations
of H2O2 and copper, tyrosine residues are converted to
3,4-dihydroxyphenylalanine and tyrosine-tyrosine
cross-linkages may be formed (69–75). In the pres-
ence of ONOO–, tyrosine residues are converted to 3-
nitrotyrosine derivatives while HOCl forms 3-chlortyro-
sine derivatives (76).

Modification of aliphatic amino acids

Only a few of the aliphatic amino acids are sus-
ceptible to oxidative modification. Lysine residues are
converted to a-aminoadipylserine-aldehyde residues;
arginine and proline residues are both converted to
glutamyl semialdehyde, 4- and 5-hydroxyproline, and
pyroglutamic acid; glutamyl residues are converted to
oxalic acid and pyruvyl derivatives; threonine residues
are converted to 2-amino-3-ketobutyric acid; and the
hydrophobic amino acid residues, valine and leucine,
are converted to 3-hydroxy and 3- and 4-hydroxy deriv-
atives, respectively (55, 77, 78).

Metal-catalyzed oxidation of the side chains of
lysine, arginine, proline, and threonine residues of pro-
teins leads to the formation of protein carbonyl deriva-
tives. However, direct oxidation of proteins is not the
only way that protein carbonyl derivatives can be
formed (79–81).
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Oxidative damage of DNA

Nuclear DNA (nDNA) and mitochondrial DNA
(mtDNA) are extremely susceptible to oxidative dam-
age. Oxidative modification of mtDNA contributes
mutations linked to myopathies, encephalomyopa thies,
heart diseases, late-onset diabetes, Parkinson's, Hun -
tington's, and Alzheimer's disease, and to ageing, while
oxidative damage to nDNA causes inflammation, neu-
rodegenerative diseases, apoptosis, cancer, and ageing
(82–86). The causal relationship between oxi dative
DNA modifications and diseases, cancer, and ageing is
rarely directly documented. 

The DNA antioxidative repair system includes a
large number of enzymes (including DNA endonucle-
ases, AP endonucleases, pyrimidine-hydrate-DNA gly-
cosylase, DNA polymerases, DNA ligases), histones
and FR scavengers. Defects in repair enzymes are a
major risk factor for cells (87). 

ROS and RNS cause base modifications (oxida-
tion and deamination), base loss (apurinic, AP sites),
single- and double-strand breaks, and cross-links in
DNA. Around 100 oxidative DNA modifications have
been identified (88–90). It should also be noted that
ROS (and presumably RNS) not only damage DNA but
may also inhibit repair activities (91). The hydroxyl rad-
ical reacts with all four DNA bases and generates a
large number of characteristic products, among them
8-hydroxy-2-deoxyguanosine (8-OHdG). Nitric oxide
and its congeners mainly cause DNA-deamination, but
when in the ONOO– form it can also lead to a pattern
of damage similar to that induced by HO.. The DNA
damage profile induced by RNS may result in apopto-
sis (15).

Hydroxyl radicals preferentially react with DNA
bases rather than with sugars and leads to modified
bases, and to cleavage of the sugar-phosphate back-
bone of the DNA. 8-OHdG is formed in reactions of
DNA with HO., 1O2, excited photosensitizers, and
ONOO–.

Apurinic/apyrimidinic sites (AP sites) can be
formed by normal spontaneous hydrolysis and by oxi-
dation of sugar residues. AP sites are non-instructive
lesions, block DNA replication, and frequently result in
deletions, because at AP sites strand breaks are readil
y happen. Unlike single-strand breaks, double-strand
breaks are very critical and seem to be responsible for
chromosomal aberrations (92).

Involvement of oxidative stress 
in disease pathogenesis

Reactive species are constantly synthesized and
are involved in the regulation of diverse physiological
processes (93). Increased FR production and/or inad-
equate FR elimination by the ADS and/or non-enzy-
matic endogenous antioxidants results in OS. High

concentrations of FR exert toxic effects and are associ-
ated with more than 100 different diseases including
malignancy, autoimmune diseases, cardiovascular dis-
ease, and neurodegenerative diseases.

Oxidative stress and malignant disease

Increased ROS production is necessary but not
sufficient for inducing malignancy. Furthermore,
healthy cells exposed to H2O2 or O2

.– upregulate the
expression of genes responsible for cell growth and
proliferation. Altered re-dox-dependent signaling reac-
tions in cells can occur under conditions of increased
ROS production that can ultimately contribute to can-
cerogenesis (mutagenesis, tumour formation and
metastasis). 

DNA is the most important target of highly potent
ROS such as HO.. The most frequent DNA changes
are base loss and formation of abasic sites (AP site),
cleavage of the DNA chain and sugar modification
(94). Depending on the oxidative DNA product formed
the biological consequences differ. 8-hydroxy-2-
deoxyguanosine (the most commonly used marker of
oxidatively modified DNA produced in the reaction
between purine and FR) leads to mutagenesis (95, 96).
Sugar molecule damage induced by HO. causes struc-
tural DNA damage (breakage of 5’ or 3’ phosphodi-
ester bond). This also happens after the reaction of
MDA (a terminal product of lipid peroxidation) carboxyl
group and the amino group in DNA bases forming
Schiff base. DNA damage also leads to mutagenesis
(97, 16). Free radicals also inhibit ADP-ribosylation
through NADPH depletion that in turn stimulates poly-
ribosylation and consequently rearrangement of genet-
ic material in DNA sequences which can be considered
to be a cancerogenic phenotype (98).

Ionizing radiation causes DNA chain break and
base modification, while UV radiation produces pyrimi-
dine dimers, and as a result deletion may occur within
chromosomes (99). Gamma rays induce HO. radicals
that rapidly attack all classes of biomolecules. Hy dro -
phobic amino acids are converted to hydroxyl and hy -
droperoxy derivatives. The most sensitive biomarker for
exposure to gamma rays is the di-tyrosyl species (100).

As the most toxic and reactive LP end product,
HNE inhibits DNA synthesis, inactivates enzymes, alters
cell signaling and gene expression and directly con-
tributes to carcinogenesis (101, 102). 

Some types of malignant cells (including thyroid
medullary carcinomas) produce extremely high levels
of ROS. Furthermore, patients suffering from malig-
nant diseases have diminished glucose clearance the -
reby enhancing glycolytic activity and increasing lactate
production. These pro-oxidative conditions are proba-
bly supported by the increased availability of mitochon-
drial energy substrates. Treatment with N-acetyl-cys-
teine (a precursor of glutathione synthesis) significantly
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lowers proliferation indexes in patients that are at high
risk for colon carcinomas or have primary colon adeno-
matosis polyposis. This confirms the involvement of OS
in the pathogenesis of the above-mentioned diseases
(103).

Oxidative stress and diabetes 

Hyperglycaemia is associated with increased ROS
production via multiple mechanisms. It is thought that
mitochondrial complex II plays a key role in such a
process.

Reduced sugars may react non-enzymatically with
amino groups of proteins, as well as with lipids, includ-
ing oxidative and non-oxidative rearrangements based
on Millard's reaction. In reactions between reduced
sugars and proteins, an unstable »Schiff base« is first
produced (a fast and reversible reaction) and then the
generation of final stable and irreversible products
known as advanced glycosylated end products (AGE-
products) (reaction of oxidative degradation and con-
densation, where intra-molecular rearrangement re -
sults in AGE-products generation). Glycation (O2

.– is
formed during glucose autooxidation), a common bio-
chemical reaction in diabetics, leads to AGE-product
formation that may take weeks and months to arrive
completion. AGE-product binding to specific receptors
(RAGE) interfers with intracellular signaling pathways
and induces proinflammatory and profibrotic cell res -
ponses (104). As a consequence, an immune re sponse
occurs as well as the initiation of the prothrombotic
effect (thromboxane A2 release and aggregation of
thrombocytes). Hydrogen peroxide and organic peroxi -
des are known to induce increases in intracellular calci-
um concentrations (105). There is evidence indicating
the formation of membrane pores or ionophore-like
activity and perturbations in ion pumps (106, 107) that
cause calcium influx.

Rapid increases in intracellular calcium are
accompanied by stimulation of protein kinase C (PKC).
It is postulated that oxidation of vicinal thiols and the
formation of disulfide bridges within the regulatory
domain of PKC converts the enzyme to a state exhibit-
ing calcium-and phospholipid-independent catalytic
activity (108, 109). Oxidation of amino acids is invol -
ved in PKC binding to the membrane, and this oxida-
tion may take place via peroxidation of unsaturated
fatty acids in the proximity of specific amino acid re -
sidues of PKC. Further oxidation has been shown to
inactivate PKC, indicating that the enzyme may under-
go bimodal regulation based on the extent of oxidative
modification. Reducing enzyme systems such as thiore-
doxin or the presence of thiol agents can inhibit modi-
fication and regulate enzyme activity (108, 110, 111).

Phospholipase A2 is a target for FR most likely via
the Na+/H+ pump, Ca2+, protein kinase C or recep-
tors coupling to the activation of extra-cellular regu -

lated protein kinase (ERK). Subsequently, arachidonic
acid is released and is metabolised to endoperoxide
and thromboxane. This later phase of arachidonic acid
metabolism is also activated by cyclooxygenase in the
presence of H2O2. Lipoprotein-binding phospholipase
A2 (LP-PLA2) has a key role in the degradation of oxi-
dized phospholipids and the production of lysophos-
phatidylcholine and oxidized fatty acids and therefore it
is a very important marker of endothelial dysfunction in
diabetics. There is also a correlation with C-reactive
protein (CRP) concentration, which alludes to inflam-
mation in atherosclerotically-deteriorated arteries. It is
well known that the plasma concentration of CRP
(acute- phase protein) increases (or decreases) by 25%
or more during inflammatory disorders. CRP can rise as
high as 1000-fold during inflammation.

Diabetic patients usually have high serum levels
of pro-inflammatory markers [C reactive protein (CRP)]
which are accurate inflammatory markers. Complica -
tions secondary to diabetes mellitus include endothelial
cell dysfunction, increased aggregation of thrombo-
cytes and activation of atherosclerosis. 

MDA concentrations are elevated in diabetic pa -
tients, as well as MDA- and HNE-modified proteins
(112, 113).

Several studies focussing on the role of antioxi-
dants for the treatment of diabetics have shown prom-
ising results. 

Oxidative stress and atherosclerosis

Atherosclerosis is the major cause of coronary
heart disease and brain damage (114).

Oxidative stress is considered to be the dominant
initiator of atherosclerosis. The role LP is clearly central
to the formation of modified and atherogenic lipopro-
teins. Enhanced uptake and receptor-mediated deli very
of the oxidized lipoproteins also provides a »targe ted«
means for delivering oxidized lipids and their decompo-
sition products to intracellular sites, resulting in the sig-
naling and expression of stress response genes, cyto ki -
nes, and adhesion molecules and expression of enzy -
mes regulating cholesterol homeostasis (115–117).
These events may be evoked either directly or indirect-
ly through the presence of LP products and, in a con-
certed manner, facilitate the development of an ather-
osclerotic lesion.

The autooxidation of hemoglobin and myoglobin
represents a probable mechanism for LP involving
heme normally exist in the Fe2+ state. Hemoglobin and
myoglobin undergoes two steps of oxidation to form fer-
ryl state (Mb-Fe4+). In intermediate state, methemoglo-
bin and metmyoglobin (Mb-Fe3+) along with H2O2 are
formed. Oxidation of heme proteins can promote ather-
osclerosis by facilitating oxidation from low-density
lipoprotein (LDL) containing trace levels of peroxides
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(118). This is supported by findings that free heme is
released from injured cells in the areas of hemorrhagic
plaques, iron accumulates in atherosclerotic lesions,
and cells treated with heme induce the synthesis of
heme oxygenase and ferritin as cytoprotectants (119,
120). These lesio ned areas also contain pronounced
levels of oxidatively modified lipoproteins as measured
by immunospecific staining techniques (121).

The underlying basis of the pathophysiological
role of OS in atherosclerosis is the induction of protein
kinases including focal adhesion kinase and intracellu-
lar adhesion molecule 1, (ICAM-1) (122). Monocyte
and T lymphocyte arterial wall invasion is an early event
in the atherosclerotic lesion. The binding of oxidized
low-density lipoproteins (oxLDL) to receptors on mono-
cytes, macrophages and smooth muscle cells cause
their activation and enhanced expression of mitochon-
drial superoxide dismutase (mSOD). Enhanced SOD
activity contributes to elevated H2O2 concentration in
the local environment. 

The immunological colocalization of 15-lipoxyge-
nase and oxidized LDL in endothelial cells and the
subendothelial space and inhibition of LDL oxidation by
lipoxygenase inhibitors provide evidence that lipoxyge-
nase may serve as a trigger for progressive LDL oxida-
tion. It is plausible that either specific stimuli or gener-
al tissue injury can trigger lipoxygenase activity (121,
123–125). 

Esterified F2-isoprostane (a reliable oxidative
stress biomarker of lipid peroxidation in vivo) in plasma
lipoproteins clearly reflects the degree of LDL particle
oxidation, as the central event of atherosclerosis, is ele-
vated in patients with such kind of coronary disorders
(126).

The formation of the atherosclerotic lesion is asso-
ciated with significant macrophage apoptosis whereas its
rupture is associated with endothelial cell apoptosis
located in the fibrotic layer of the lesion. Phagocytes pos-
sess RAGE and after their binding AGE-products alter
intracellular signaling that may be directly connected
with oxLDL activation, supported by various cytokines
[including tumour necrosis factor (TNF-a), interleukin
1b (IL-1b) and interferon-g]. Additionally, angiotensin II
may induce O2

.– production in endothelial cells in the
presence of cell membrane-associated nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase (the
major source of ROS in myocytes present in blood ves-
sels) (127).

In addition, xanthine oxidase (XO) and myeloper-
oxidase (MPO) as potential sources of ROS are present
in atherosclerotic plaques and the blood of patients
with coronary diseases, respectively. Furthermore, in
the walls of coronary arteries chlorotyrosine (formed by
MPO-mediated protein oxidation by hypochloric acid)
is present. Alterations in blood flow additionally con-
tribute to tissue re-dox status. 

Elevated MDA concentrations have been meas-
ured in plasma and atherosclerotic plaques of patient
with coronary disease, along with complex compounds
formed in the reaction between LP end products
(MDA, HNE) and lysines of apolipoproteins B-100. The
binding of MDA to LDL results in the formation of foam
cells (128).

Oxidative stress and hypertension

Numerous experimental studies have confirmed
that glutathione (GSH) depletion is associated with
hypertension. Oxidative stress has been found in pa -
tients with reno-vascular hypertension (dependent on
angiotensin II). In fact, angiotensin II stimulates
NAD(P)H oxidase activity and upregulates SOD activi-
ty in the vascular endothelium, which is probably a
compensatory reaction to increased ROS generation. 

Oxidative stress and inflammatory 
disease

Circulatory complications during sepsis lead to
inadequate oxygen delivery to tissues. Together with
other cytotoxic mediators (among them ROS) massive
tissue injury ensues. In the microcirculation activation
of neutrophils primarily results in ROS production.
Activated phagocytes defend cells against microorgan-
ism invasion through ROS production, which in turn
adversely effect cells by deteriorating structure and
function (129).

In addition to oxidative cell injury, nitrosative
stress (NS) also contributes to overall tissue deteriora-
tion during inflammation. Nitrogen monoxide (NO), a
compound with high vasoactive potential, is produced
during inflammation and readily reacts with O2

.– to
form ONOO–, a non-radical compound with extreme-
ly harmful pro-oxidative properties (130). Peroxynitrite
can initiate lipid peroxidation, react with and deplete
GSH (irreversibly inhibit mitochondrial respiratory elec-
tron transport by binding to Fe-S groups, modify DNA
bases by oxidation or nitration and cleave and/or inter-
rupt DNA strands). DNA strand breakage activates the
nuclear enzyme poly(ADP-ribose)polymerase (PARP),
which catalyzes degradation of nicotinamide dinu-
cleotide (NAD) to ADP-ribose and nicotinamide. PARP
then catalyzes the covalent binding of ADP-ribose to
different nuclear proteins and contributes to NAD
depletion in cells and a slow down of glycolysis, elec-
tron transport and production of adenosine triphos-
phate (ATP), processes seriously implicated in cellular
dysfunction and apoptosis/necrosis. 

Besides pro-inflammatory cytokines including
TNF-a and IL-1, OS is one of the major inducers of
nuclear transcription factor kappa B (NFkB) activity
which is responsible for the transcription of genes for
coding for proteins involved in inflammation (cyto kines,
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leukocyte-endothelial adhesion molecules and indu -
cible nitrogen monoxide synthase (i-NOS) (131).

NFkB appears to become activated by re-dox
events in cells and thus is regarded as an oxidative
stress response factor (132). The ability to induce the
expression of cytokine genes, along with a series of
other acute response proteins in vascular cells, is
shared by both oxidized LDL and fatty acid hydroperox-
ides. Inhibition of these responses by antioxidants is
taken as evidence that the effects occur through cellu-
lar OS involving re-dox-sensitive transcriptional or post-
transcriptional factors (133).

In mitochondria proteins targeted by ROS and
RNS include the key enzymes for energy production
(glutamate dehydrogenase, aconitase and glyceralde-
hyde phosphate dehydrogenase), cytochrome c oxi-
dase-V and creatine kinase.

Oxidative stress and autoimmune 
diseases

Improving immune system reactivity in a pro-
oxidative environment is important to impede patho -
gen growth and reproduction, but it also assumes risk
to initiate autoimmune processes. It has been demon-
strated that ROS are involved in the pathogenesis of
rheumatoid arthritis at the site of inflammation. This
systemic autoimmune disease is characterised by infil-
tration of macrophages and activated T-lymphocytes
into the synovial fluid of joints. A decreased concentra-
tion of GSH was found in T-lymphocytes isolated from
synovial fluid from rheumatoid arthritis patients. Low
GSH alters the intracellular localization of linker for acti-
vation of T cells protein (LAT-protein) that consequent-
ly diminishes intracellular T-lymphocyte phosphoryla-
tion. Monocyte and lymphocyte migration into synovial
fluid of inflammed joints is mediated by increased
expression of adhesion molecules such as E-selectin
(ELAM-1), vascular adhesion molecule-1 (VCAM-1),
ICAM-1 and ICAM-2. It is thought that this process is
a consequence of induction of cellular red-ox signaling
pathways, whereas enhanced OS in synovial fluid in
patients with rheumatoid arthritis is connected with a
higher incidence of p53 mutation (134).

In addition, AGE-products have been detected in
rheumatoid arthritis patients (135).

Oxidative stress and viral infections 

An altered re-dox status is common during viral
infections. The involvement of OS has been confirmed
during early stage HIV infection. The turnover of cys-
teine (a non-essential or semi-essential amino acid) to
sulfate is extremely high in patients with HIV infection.
In such patients, loss of cysteine is greater than 4 g
/day and such a phenomenon is observed even in the
asymptotic phase of the disease. It was previously

thought that the excessive cysteine loss was at the
expense of extensive muscle protein catabolism (also
due to muscle mass loss), but based on the ratio of sul-
fate/urea the interpretation was changed to that of
GSH depletion. Furthermore, even in later phases of
the disease massive muscle loss is observed.

Due to impairment of the immune system caused
by a progressive decrease in the CD4+ T-lymphocyte
population, HIV positive patients readily fall ill from dif-
ferent infections. The decreased number of CD4+
cells during disease progression suggests that their pro-
duction is diminished, therefore cysteine supplementa-
tion is recommended.

Depletion of intracellular GSH in peripheral blood
lymphocytes has been recorded in HIV positive
patients. Numerous lymphocyte functions depend on
intracellular GSH. Double blinded studies on HIV posi-
tive patients have convincingly demonstrated the bene-
fits of N-acetylcysteine therapy to improve different T-
lymphocyte dependent immune functions and repair
natural killer (NK) cell activities to almost normal (phys-
iological) values (122).

Stimulation of phospholipase C and chemotaxis
of neutrophils by HNE are two processes occurring in
patients with rheumatoid arthritis, systemic sclerosis
and lupus erythematodes when its concentration is
increased 3–10 fold (101, 102). 

Oxidative stress and sepsis

The main inducers of OS in sepsis are activated
phagocytes (polymorphonuclear cells, macrophages,
eosinophils), NO generated by NOS in the vascular
endothelium, Fe and Cu ions released from metalopro-
teins, and zones of local ischemia/reperfusion. Incre -
ased XO activity has been detected in local areas of
ischemia/reperfusion in tissues of septic animals. It is
well known that XO exists in two forms, as XO and xan-
thine dehydrogenase (XDH) and in reperfusion, XDH
converts to XO which catalyses the formation of xan-
thine and O2

.– from hypoxanthine (a degradation
product of ATP).

Phagocytes activated by different stimuli such as
lipopolysaccharides (LPS) and other pro-inflammatory
mediators (TNF-a, IL-1b and IL-6) augment NADPH-
oxidase and MPO activities. In activated neutrophils and
phagocytes in the presence of H2O2 MPO catalyzes the
oxidation of chlorides to hypochloric acid, leading to
biochemical chain reactions for ROS production (136).
During phagocytosis, throughout the process known as
the »oxidative burst« oxygen depletion occurs (20 times
higher than normal) and almost 90 % is converted into
O2

.– in the presence of NADPH-oxidase (as NADPH is
the key electron donor) or other ROS in order to destroy
microorganisms (1). Phago cytosis is the main source of
ROS in sepsis (129).  
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Increased 15-lipoxygenase activity (leading to
leukotriene production) is observed in reperfusion of
ischemic tissues (137). Attenuation of ischemia/reper-
fusion injury by lipoxygenase inhibitors and antioxi-
dants indicates the important role of lipoxygenase-
mediated reactions in the common pathological condi-
tion.

However, decreased levels of antioxidants (ascor-
bate, a-tocopherol, GSH) and vitamin A in plasma of
septic patients clearly reflect the involvement of OS.

It is possible to detect OS in the central nervous
system (CNS) at an early stage of sepsis. We have
detected LP in brain capillaries isolated from rats
induced by a modified method of cecal ligation and
perforation (Figure 2) (138).

Oxidative stress and ischemia/
reperfusion

Ischemia and reperfusion are pathophysiological
events often studied to understand aspects of reduc-
tive/oxidative stress (139). Reperfusion injury after
myocardial infarction, stroke or organ transplantation is
a well-known complication of insufficient tissue reoxy-
genation. In energy exhausted cells, in ischemia/reper-
fusion domains, where significant ATP depletion
occurs, adenosine is degraded to hypoxanthine which
further undergoes oxidation to xanthine and O2

.–, ca -
talyzed by XO in the presence of NAD+ (an electron
acceptor). The O2

.– produced, indicates that OS medi-
ates such events. Oxidatively modified proteins have
been detected in ischemia/reperfusion areas (50–53,
140, 141).

Neutrophils are the major effectors during reper-
fusion injury. It has been demonstrated that antioxi-
dants improve leukocyte adhesion and decrease post-

ischemia myocardial injury. Experimentally induced
ischemia/reperfusion in the rat heart is connected with
activation of red-ox susceptive transcription factors
responsible for the inflammatory response and apopto-
sis in injured tissue (142). 

Systemic ischemia/reperfusion is observed in
patients with the obstructive syndrome »sleep apnoea«
(repeated episodes of apnoea or hypopnoea during
sleeping). The involvement of ROS in cardiovascular
complications in patients with »sleep apnoea« has been
confirmed by measuring high O2

.– concentrations in
peripheral blood neutrophils. In addition, incre ased
expression of adhesion molecules, ICAM-1 and
VCAM-1 has also been found in these patients. Hy -
pertension, along with other cadiovascular diseases, is
very common in such patients. 

Oxidative stress and brain diseases

Due to high oxygen demands, intense oxidative
phosphorylation activity and high concentrations of
unsaturated fatty acids (UFA) neuronal tissue is espe-
cially vulnerable to oxidative injury (143). An increased
level of MDA has been found in plasma and cere-
brospinal liquid in patients that experienced a re versible
transient ischemic attack (TIA) (often colloquially
referred to as »mini stroke«) and a stroke (144). Due to
high Fe ion concentrations as well high metabolic turn
over of dopamine (one of the bi-products being O2

.–)
basal ganglia are particularly susceptible to oxidative
damage (145).

The contribution of OS to the pathogenesis of
Parkinson's disease has been confirmed by numerous
experimental and clinical studies [10]. Elevated MDA
concentrations and changed in SOD activity have been
found in patients with Parkinson’s and Alzheimer’s dis-
eases (146, 147).

In an experimental study concerning the develop-
ment of inheritable Huntington’s disease we have
shown excitotoxicity effects (the pathological process
by which neurons are damaged and killed by excitato-
ry neurotransmitter receptor over-activation) by OS and
NS in basal ganglia (148).

Furthermore, in an experimental model of Alzhei -
mer's disease we have reported that the harmful effect
of aluminium intoxication is mediated by ROS and
results in brain tissue injury typical of Alzheimer's dis-
ease (147).

SOD over-expression causes H2O2 production
which can be a precursor of toxic HO. species. There
is evidence to suggest that this process could be pres-
ent in Down’s syndrome sufferers. Additionally, with
respect to the neurotoxic effects of pesticides (paraquat
and diquat) in rats we have reported OS as a key dam-
aging process targeting vulnerable brain regions (149).
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Figure 2 Lipid peroxidation index in brain capillaries of
septic Wistar rats.
** statistical significance compared to controls (sham-operated

animals), p<0.01
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Oxidative stress and unaccustomed 
body exercise 

Increased ROS production has been found after
extreme muscular activity. It has been shown that unac-
customed exercise is known to result in significant
damage to skeletal muscle in both trained and untr a -
ined subjects. Exercise in excess (an acute increase in
volume, intensity, and/or mode) of that to which a
muscle has become adapted can be termed acute
unaccustomed stress (AUS). The resulting damage to
the muscle can be structural and/or metabolic.
Although reduced metabolic function after AUS has
been demonstrated, the underlying causes remain
unclear (150).

A decreased reduced/oxidized glutathione ratio
(GSH/GSSH) together with a two-fold increase in ROS
concentration in skeletal muscle and liver after AUS
bouts (due to enhanced oxygen demands and incre a sed
XO activity) has been observed in plasma and ery thro -
cytes. Loss of muscular oxidative capacity and me tabolic
changes occur in an athlete's muscle after AUS bouts.
Sustained OS can have adverse effects on mitochondrial
function after long duration exercise bouts (151).

A significantly lowered GSH/GSSH and incre ased
MDA level has been found in arterial blood of patients
with obstructive lung disease after unaccustomed exer-
cise. Improvement was observed after treatment with
alopurinol, a potent inhibitor of XO. In addition, the
consumption of N-acetylcysteine improves muscle con-
dition after AUS bouts, which confirms alteration of the
GSH status. 

Oxidative stress and poisoning 
by bypiridyles

Numerous xenobiotics (including environmental
pollutants, X- and UV- rays, medicines, industrial sol-
vents, toxic metals and smoking) exert their toxicity via
FR production (1–3, 6, 7). Bypridyles are fine examples
of chemical agents that are pro-oxidative in nature.

Paraquat (PQ) and diquat (DQ) are quaternary
nitrogen compounds and contact herbicides widely
used in agriculture. They are extremely toxic to hu mans
and animals by all routes of exposure such as inha -
lation and digestion. PQ causes progressive lung and
kidney failure resulting in convulsions, uncoordination
and death due to respiratory failure. DQ toxicity is

mediated via the liver and kidney. These herbicides
have been classified as possible human carcinogens.

Both paraquat and DQ toxicity is mediated by FR
production during their re-dox metabolism. 

In the presence of NADPH and molecular oxy-
gen, PQ2+ (the di-cation form of PQ) undergoes one-
electron reduction to form the stable PQ-radical
(PQ.+) and O2

.– (Figure 3) (152). O2
.– further dismu-

tates into H2O2, by SOD or via a spontaneous reaction.
Chain radical reactions are triggered that induce oxida-
tive tissue injury which is an underlying mechanism of
PQ toxicity. 

The ROS generated provoke the development of
OS in target tissues. In our experimental studies on rats
intrastriatally poisoned with PQ and DQ we demon-
strated that both herbicides induced oxidative damage
of neuronal tissues (Figure 4). Oxidative stress status
parameters (O2

.–, MDA, GSH, SOD and GSH-Px) were
determined in three vulnerable brain regions (striatum,
cortex and hippocampus) after 30 min, 24 h and 7
days, by standard analytical methods (153).

Reversible Parkinson’s-like symptoms were obser -
ved immediately after poisoning with PQ. A high de -
gree of similarity between PQ and MPTP (1-methyl 4-
phenyl 1,2,3,6-tetrahydropyridine) supports the hypo -
thesis that the obtained effects are analogous (Figures
3 and 5). It is well known from the literature that MPTP,
a by-product of an illicit narcotic drug, is a neurotoxin
that causes permanent symptoms of Parkinson’s dis-
ease affecting dopaminergic neurons in the Substatia
Nigra of the brain. 

The results from our experiments indicate that the
most obvious mechanisms of the neurotoxic effects of
the herbicides were due to LP and increased GSH-Px
activity in the striatum. This clearly proves the notion
concerning induced OS and neuronal damage.

Conclusion

Oxidative stress as a pathophysiological mecha-
nism has attracted the attention of researchers since
the 1950s. Perturbed red-ox homeostasis has been
confirmed in more than 100 diseases. The toxic effects
of excessively produced FR result in oxidative cell injury,
thus finding appropriate OS biomarkers is of great sig-
nificance for clinical laboratory diagnostics (155, 156).

Better insight into the pathophysiological mecha-
nism(s) of numerous diseases could be achieved if cli -
nical laboratories implement OS diagnostic biomarker
measurements. Even in asymptotic phases of diseases
a perturbed red-ox status can be observed. Nowadays,
the determination and monitoring of OS status param-
eters is very important for clinical diagnostics as well as
for the evaluation of treatment efficacy.

The consumption of antioxidants has provided
encouraging results in the prevention and treatment of
many diseases. The discovery of novel antioxidants is a
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Figure 3 Stability of PQ.+ due to conjugated double
bonds in the pyridine ring and the presence of quaternary
nitrogen in the second pyridine ring.
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key objective of many researchers in the field of preven-
tion and disease treatments (157–161). 
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Figure 4 Oxidative stress parameters in the striatum of Wis tar rats intrastriatally poisoned with paraquat and diquat. a) Conc -
entration of superoxide anion radical in the striatum of Wistar rats intrastriatally poisoned paraquat and diquat; b)Activity of super-
ooxide in the striatum of Wistar rats intrastriatally poisoned paraquat and diquat; c) Lipid peroxidation in the striatum of Wistar rats
intrastriatally poisoned paraquat and diquat; d) Concentration of glutathione in the striatum of Wistar rats intrastriatally poisoned
paraquat and diquat; e) Activity of glutathione perooxidase in the striatum of Wistar rats intrastriatally poisoned paraquat and
diquat. Statistical significance is indicated for p<0.05. Control values are indicated as the bold horizontal line within the panels.
The experiment was conducted on Wistar rats of both sexes (11 weeks old with an average body mass  250 g). Each experimen-
tal group consisted of 8 animals placed in one cage with free access to food and water. On the seventh day before the experiment
the animals were adjusted to the experimental conditions including temperature (23 ± 2 °C) and a circadian ratio of light and dark
11:13 (154). Before poisoning Wistar rats were anesthetized intraperitoneally with sodium pentobarbital (40.5 mg/kg TM).  The
control group of animals were intrastriatally treated with 10 mL of physiological saline and the poisoned groups with PQ and DQ
at a dose of 50 mg/kg (2.5 mg/10 mL).

0

20

40

60

80

100

120

140

160

180

30 minutes 24 h 7 day

M
D

A
 (

pm
ol

/m
g 

pr
ot

) 

DQ PQ

control values

0

100

200

300

400

500

30 minutes 24 h 7 day

G
SH

-P
x 

(m
U

/m
g 

pr
ot

) 

DQ PQ

control values

0

200

400

600

800

1000

1200

1400

30 minutes 24 h 7 day

SO
D

 (
U

/m
g 

pr
ot

)

DQ PQ

control values

0

1000

2000

3000

4000

5000

6000

7000

30 minutes 24 h 7 day

O
2

•
- 

(n
m

o
l r

ed
. 

N
B

T
/m

g
 p

ro
t)

 

DQ PQ

control values

0

5

10

15

20

25

30

30 minutes 24 h 7 day

G
SH

 (
nm

ol
/m

g 
pr

ot
) 

DQ PQ

control values

Figure 5 Chemical structure of MPTP.
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