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Introduction

Atherogenesis is a complex process currently 
considered as a chronic inflammatory response of the 
vascular wall to increasing cellular oxidative stress. 
The inflammatory characteristics of atherosclerotic 
lesions were observed 200 years ago. However, du-
ring the 20th century, the lipid theory dominated the 
field of atherogenesis. In 1976, R. Ross (1) turned our 
attention back to the inflammatory nature of athero-
sclerosis with his first significant review on athero-
sclerotic plaque formation. Almost all traditional risk 
factors for atherosclerosis are associated with and 
participate in the inflammatory process. Central to 
the initiation of atherogenesis is some form of locali-
zed endothelial dysfunction (2). Endothelial dysfunc-
tion or activation can occur in response to a variety of 
stimuli, such as oxidized LDL, free radicals caused by 
smoking, hypertension, diabetes, genetic alterations, 
elevated plasma homocysteine concentrations, infec-
tious microorganisms, as well as antibodies.

Inflammation in atherosclerosis

Healthy or quiescent endothelium serves as 
an important autocrine and paracrine organ with 
regulatory and control functions capable of maintain-
ing vascular homeostasis. It mediates vasodilation, 
actively inhibits leukocyte adhesion and migration, 
platelet adhesion and aggregation, vascular smooth 
muscle proliferation and migration. Also, it inhibits 
coagulation, promotes fibrinolysis and participates 
in immune and inflammatory reactions (3). Qui-
escent endothelium does not normally bind white 
blood cells. But, soon after exposure to atherogenic 
stimuli, endothelial cells (ECs) are activated and ini-
tially acquire a proinflammatory and procoagulant 
phenotype. The dramatic changes in endothelial 
functional properties are mediated by the induced 
expression of several genes by nuclear factor-kappa 
B (NF-kB), commonly a proinflammatory transcrip-
tion factor. Through the activation of NF-kB, ECs 
begin to express on their surface adhesion mo lecules 
(selectins, intercellular adhesion molecules Ê ICAM5, 
vas cular cell adhesion molecules Ê VCAMs), that act 
as receptors for integrines present on monocytes and 
T-cells. VCAM-1 binds monocytes, T lymphocytes 
and the types of leukocytes found in early human 
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and experimental atheroma (4). It seems that the 
expression of VCAM-1 directly depends on the nitric 
oxide (NO) production (5). So, the reduction of local 
NO production can block the expression of VCAM-1 
(5), while the abnormal shear stress can increase the 
production of ICAM-1 (6), as well as the production of 
proteoglycans in smooth muscle cells, that can bind 
and retain lipoprotein particles which are, after their 
oxidation, capable of promoting an inflammatory re-
sponse at the sites of plaque formation (7).

Apart from the adhesion molecules, ECs ex-
press chemotactic cytokines, such as monocyte 
che moattractant protein-1 (MCP) responsible for the 
migration of monocyte into the intima, whilst CXL 
chemokines (8) help lymphocytes to penetrate the 
arterial wall. Under the influence of the macrophage-
colony stimulating factor (M-CSF), monocytes are 
transformed into macrophages and begin to express 
scavenger receptors for modified lipoproteins on their 
surface (9). ACE inhibitors, aspirin, antioxidants, 
and H2O2 scavengers exhibit opposite effects. This 
sug gests that H2O2  may function as a second mes-
senger in macrophage NF-kB activation (10). During 
the ingestion of li pids, macrophage foam cells are 
formed. These cells to  gether with T-cells located un-
der a monolayer of endothelial cells represent the first 
lesion of atherosclerosis, the so-called fatty-streak. In 
this location, T-cells are activated and, together with 
native vascular wall cells, secrete cytokines, fibroge-
nic mediators and growth factors that can induce the 
migration and proliferation of smooth muscle cells 
(SMCs) which can, due to the degradation of arterial 
extracellular matrix by specialized enzymes expressed 
in medial SMCs, penetrate the subintimal area (11). 
They also secrete factors that further stimulate the 
recruitment of monocytes (12).

Inflammatory cytokines and C-reactive protein 
(CRP) induce the expression of cellular adhesion mo-
le cules, which mediate the adhesion of leukocytes to 
the endothelium. The process continues with repea-
ted cycles leading from the first lesion of atheroscle-
rosis through the fatty streak and intermediate lesions 
to the advanced lesions with the characteristic core of 
lipids and necrotic tissue which is covered by a fibrous 
cap. The necrotic core is formed from the apoptosis 
and necrosis of macrophages which empty ingested 
lipids inside the plaque. 

Oxidative stress and atherosclerosis

It seems that oxidative stress-induced endothe-
lial dysfunction represents one of the first stages in 
the development of atherosclerotic lesions (13Ê15). It 
depends, at least partly, on the production of reactive 
oxygen species (ROS) and the subsequent decrease 
in vascular bioavailability of nitric oxide (NO). There is 
evidence that the atherosclerotic vessel wall contains 
increased levels of ROS, including hydroxyl radicals 
(HO

.
), superoxide anions (O2

. Ê), hydrogen peroxide 
(H2O2), and lipid peroxides (LOOH

.
) (16, 17). ROS 

producing enzymes involved in increased oxidative 
stress within the vascular tissue include NADPH oxi-
dases, xanthine oxidase, lipoxygenase, cyclooxyge na-
se, cytochrome p450-type enzymes, endothelial ni-
tric oxide synthase (eNOS) uncoupling mechanisms, 
and mitochondrial superoxide-producing enzymes. 
eNOS uncoupling occurs in the absence of substrate 
L-arginine or co-factors BH4, in the presence of en-
dogenous inhibitor asymmetric dimethylarginine or 
oxidative stress (18). Activation of vascular NADPH 
oxidases is common in cardiovascular diseases and 
has a predominant role in generating ROS in diffe-
rent vascular cells, including endothelial cells, SMCs 
and fibroblasts (19). A new family of NADPH oxidase 
subunits, known as non-phagocytic NADPH oxidase 
(NOX) proteins, have been identified. In endothelial 
cells, gp 91 phox (also called Nox2) has an essential 
role in ROS production. Mitochondrial DNA dama-
ge resulting from RS production in vascular tissues 
may, in turn, also be an early event in the initiation 
of atherosclerotic lesions (20). However, atherogenic 
stimuli are associated with a prelesional increase and 
subsequent decrease in the expression of antioxidant 
enzymes such as catalase-1, superoxide dismutase, 
glutathione peroxidase and glutathione S-transferase 
(21). By affecting several redox-sensitive pathways in 
vascular cells, ROS induces expression of adhesion 
molecules and chemotactic factors by the endothe-
lium followed by local infiltration of circulating im-
mune cells and migration and proliferation of vascular 
SMCs (22, 23). ROS-produced following angiotensin 
II-mediated stimulation of NADPH oxidases can acti-
vate signal tranducing processes leading to diffe rent 
events, including inflammation (19). Exposure of 
endo thelial cells to H2O2 increases the expression 
of ICAM-1 (24), while endogenously produced H2O2 
upregulates ICAM-1 and MCP1. H2O2 is also required 
for tumor necrosis factor-alpha (TNF-a) induction of 
ICAM-1 and VCAM-1, upregulation of MCP-1 by TNF-
-a or hyperglycemia, as well as for the expression of 
platelet activating factor (PAF) and P selectin, all of 
which mediate neutrophil adhesion to endothelium, 
platelet activation and endothelium-platelet interac-
tion (25). Selectively overproducing or removing H2O2  
significantly altered atherogenesis in animal models. 
Mice overexpressing p22phox (a small subunit of 
cytochrome b558) had markedly increased atheroma 
formation in the carotid ligation model. This response 
was associated with elevated H2O2 production in the 
vessel wall and was abolished by H2O2 scavengers, 
implicating a critical role of H2O2 (25). In addition, 
overexpressing CuZnSOD had no effect on athero-
sclerotic lesion formation, whilst overexpression of 
catalase or co-overexpression of catalase and CuZn-
SOD markedly retarded atherosclerosis in all aspects 
(26). These data suggest that H2O2 is more athero-
genic than superoxide. On the other hand, superoxide 
could decrease endothelial NO bioavailability. Loss of 
endothelial NO is associated with several cardiovas-
cular diseases, including atherosclerosis, because 
NO plays a crucial role in regulating vasorelaxation, 
inhibition of leukocyte-endothelial adhesion, vascular 
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smooth muscle cell migration and proliferation, as 
well as platelet aggregation. Thus, defects of endo-
thelial NO function, i.e. the dysfunctional eNOS/NO 
pathway is considered as an early marker for various 
cardiovascular disorders because it is associated with 
all major cardiovascular risk factors, and also has a 
profound predictive value for the future atheroscle-
rotic disease progression (27). H2O2 increases the ex-
pression of endothelial NO synthase (eNOS) through 
transcriptional and post-transcriptional mechanisms 
(28). Although eNOS was originally thought to be 
a constitutively expressed enzyme, currently it has 
become clear that its expression can be modulated 
by a variety of chemical, physical, and developmental 
stimuli (29), including oxLDL (30). In addition, super-
oxide produced by NADPH oxidase may react with 
NO released by eNOS, leading to the generation of 
peroxynitrite. Peroxynitrite, in turn, has been shown 
to uncouple eNOS, thereby switching an antiathero-
sclerotic NO-producing enzyme to an enzyme that 
may initiate or accelerate the atherosclerotic process 
by producing superoxide (31).

Contribution of oxLDL 

to atherogenesis

Although there are data show ing that low-den-
sity lipoprotein (LDL) could transmigrate across the 
intact endothelium into the subendothelial space, 
this process is more pronounced if LDL is oxidatively 
modified (oxLDL) (32). LDL has been demonstrated 
to undergo modification by endothelial cells (33), 
smooth muscle cells (34) and monocyte-macropha-
ges (35).

OxLDL can activate ECs via  the lipid peroxide 
species generated by oxLDL which may be involved 
in NF-kB activation. Lysophosphatidylcholine, one 
of the active molecules present in oxLDL, has been 
shown to activate NF-kB in primary cultured endo-
thelial cells via a pKC-dependent path way (36). Si-
milarly, when unmodified human LDL particles are 
injec ted into a rat model, they localize in the arterial 
wall where they undergo oxidative modification which 
is accompanied by an increase in endothelial NF-kB 
activation and expression of NF-kB-dependent genes 
(37). Except in endothelial cells, activated NF-kB has 
been identified in situ in the smooth muscle cells and 
macrophages of human atherosclerotic plaques, and, 
in contrast, is strikingly absent in vessels devoid of 
athe ro  sclerotic disease (38).

During endothelial cell activation, as much as 
40% of the LDL phosphatidylcholine is degraded to 
lysophosphatidylcholine by a phospholipase A2- like 
activity. Similar results were obtained when incuba-
tion  conditions were selected to favour oxidation, for 
example, by increasing the Cu2+ concentration (33). 
These results suggest that endo thelial cells modify 
LDL by mechanisms involving the generation of free 
radicals and action of phospholipase.

A possible mechanism for oxidative modification 

of LDL has been reported to involve biologically ac-
tive proteins, such as lipoxygenase, cyclooxygenase, 
peroxidases and heme or copper-containing proteins, 
which can generate free radicals and reactive oxygen 
species (39) (Figure 1). Lipoprotein modification may 
be promoted by micro molar concentrations of iron or 
copper in a metal ion concentration- and time- de-
pendent manner (34, 40). Furthermore, peroxynitrite, 
a reactive oxidant species produced from nitric oxide 
and superoxide anion, is implicated in the pathogene-
sis of atherosclerosis through LDL oxidation, together 
with platelet aggregation, vascular hypo re activity and 
macrophage activation (41). Stimulated expression of 
iNOS is documented in macrophages, foam cells and 
the vascular smooth muscle (42). Activated phago-
cytes provide one more pathway for LDL oxidation 
in vivo due to their ability to produce superoxide. 
Also, phagocyte-specific product, myeloperoxidase, 
modifies LDL by generating reactive intermedi-
ates such as tyrosyl radical, reactive aldehydes, and 
HOCl. Both catalytically active myeloperoxidase and 
dityrosine levels in LDL have been found in human 
atherosclerotic tissue (34). Early athero scle rosis in 
Watanabe rabbits (that lack LDL receptors) is as-
sociated with excessive vascular superoxide due to 
NADPH oxidase activity (43), i.e. Nox isoforms of 
different vascular cells (endothelial, smooth muscle 
cells). Glycation or glycoxidation can result in the 
formation of low molecular mass aldehydes, such 
as methylglyoxal, glyoxal, and glycolaldehyde, which 
can modify Arg, Lys and Trp residues of the apo B 
protein of LDL. In this way, LDL is rapidly converted 
to a form that is re cognized by the scavenger recep-
tors of macrophages (44). Oxidative modification of 
LDL is accompanied by extensive degradation of its 
poly unsaturated fatty acids, generating a complex ar-

Action of cellular
oxygenase, tracc metals

On cellular lipids On LDL lipids

Transfer of oxidized
cell lipids to LDL

Generation of LDL containing
oxidized lipids

Degradation of apoB

Breakdown of lecithin to lysolecithin
and rapid propagation of peroxidation

Conjugation of fragments of oxidazed
fatty acids with amino groups of apoB

Generation of new »epitope(s)« on apoB
recognized specifically by macrophage receptors

Foam cells

Generation of ROS in the cell
(XO, NADPH, oxidase, METC, NOS)

Release of ROS into the medium

Figure 1   Mechanisms that lead to the oxidative 
modification of LDL by cells
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ray of shorter chain-length fragments. Some of these 
fragments can be covalently linked to apolipoprotein 
B (45), through the e-amino groups of lysine residues. 
Thus oxidation of LDL may generate a broad spec-
trum of conjugates between fragments of oxidized 
fatty acids and apolipoprotein B. This modified form 
of the apolipoprotein is recognized by the acetyl-LDL 
receptor (46), which can also recognize malondialde-
hyde (MDA)-conjugated LDL. Namely, LDL is mostly 
taken by classi cal LDL-receptors present on the cell 
surface of paren chimal cells. These receptors cannot 
recognize oxi di zed LDL. On the other hand, macro-
phages have few receptors for normal LDL (47), but 
these cells readily bind and internalize oxidized LDL 
by specific »sca venger« receptors. Goldstein et al. (46) 
first postulated that the modification of LDL to a form 
recognized by the scavenger or acetyl-LDL receptor 
may be required for the widespread deposition of 
LDL-derived cholesterol esters in macrophages. 

OxLDL is altered as follows: it is degraded by 
macrophages much faster; it cannot be uptaken 
through the LDL receptors; its electrophoretic mobi-
lity, density, negative charge and hydrophobic sites on 
apoB are increased; its magnitude, protein-phospho-
lipid interaction and PUFA are decreased; its content 
of lysolecithin and oxidized cholesterol is increased; 
its apo B is fragmentary with decreased content of 
histidine, proline and lysine; it shows chemoattractant 
activity and inhibits macrophage motility; and, finally, 
it is cytotoxic. As such, oxLDL could contribute to the 
atherogenic process in several ways: (1) enhanced 
rates of macrophage uptake and degradation of the 
oxidatively modified LDL through the scavenger re-
ceptor (33); (2) increased recruitment of monocytes 
into the intima by the chemoattractant activity of 
oxLDL for circulating mono cytes (48) due to induc-
tion of monocyte, chemotactic protein 1 (MCP-1) 
syn thesis (49); (3) induced adhesion of monocytes to 
the arterial intima and stimulated intimal monocytes 
to differentiate into resident macrophages (50); (4) re-
tention of macrophages in the intima through inhibi-
tion of their motility by oxLDL (48); (5) cellular injury 
caused by peroxidized lipid components of oxLDL.

Inflammation and oxidative stress 

biomarkers in ischemic heart diseases

In order to study the biomarkers of inflamma-
tion and oxidative stress, we investigated 69 patients 
with ischemic heart diseases which occured as a con-
sequence of atherosclerosis. 30 patients with acute 
myocardial infarction (AMI), 23 with unstable angina 
pectoris (USAP), and 16 with stable angina pectoris 
(SAP) were included in the study. Their results were 
compared with those of healthy individuals (control 
group). At the admission to hospital (Institute of 
Car  diovascular Diseases »Ni{ka Banja«), in all pa-
tients, 12-lead electrocardiogram, echocardiogram, 
and co  l lec tion of blood samples for the evaluation 
of standard and specific biochemical analyses were 
performed. The patients’ diseases were diagnosed ac-
cording to objective clinical findings, functional tests, 
as well as according to troponin I (Table I) which di-
rectly showed the degree of myocardial injury.

B-type natriuretic peptide (BNP) has been con-
sidered as a useful biomarker for the diagnosis, prog-
nosis and therapy monitoring of patients with cardiac 
diseases. Plasma BNP levels are elevated in patients 
with left ventricular dysfunction and heart failure, and 
in those the last BNP predicts disease progression 
and increased morbidity and mortality (51). It is a 
useful prognostic parameter in patients with acute 
coronary syndrome because patients with increased 
BNP levels have a higher rate of cardiac complications 
and higher mortality after myocardial infarction (52). 
In this study, BNP was significantly increased in all 
patient groups, from 36 ± 11 pmol/L in SAP patients 
to 155 ± 46 pmol/L in AMI patients, in comparison 
with healthy controls (12 ± 2.5 pmol/L), which shows 
that it strongly depends on the degree of patient dis-
ease (Table I).

Lipid status showed a slight deviation in com-
parison with the control group. A significant increase 
in LDL-C related to USAP patients and in LDL-C and 
TG in SAP patients was observed  (Table I). Biomark-
ers of inflammation including ESR, leukocyte count 
(Le), and C-reactive protein (CRP) were significantly 
elevated in both AMI and USAP groups, whilst in the 

Table I   Cardiac markers and lipid status in patients with ischemic heart diseases

Group n  Troponin I           
 (mg/L)

BNP  
(pmol/L)         

Cholesterol 
(mmol/L)

LDL-C 
(mmol/L)

HDL-C
 (mmol/L)

TG
(mmol/L)

AMI 30          26.98±8.78**            155±46***    5.9±0.3       3.9±0.2 1.02±0.04       2.13±0.16

USAP 23        0.253±0.16*    120±53*            5.9±0.5           3.9±0.4*       0.91±0.08      2.31±0.27

SAP 16      0.004±0.00           36±11*           5.7±0.3           3.5±0.2*       1.06±0.05        2.92±0.39*

Control 16      0  12±2.5 5.5±0.1 3.5±0.1 1.15±0.06 1.85±0.20

The results are given as means ±SE
    *  p<0.05 vs. control group
  **   p<0.01 vs. control group
***   p<0.001 vs. control group



Jugoslov Med Biohem 2006; 25 (4) 339

SAP group a significant increase in ESR and Le was 
noted (Table II).

Oxidant stress was evaluated through the lipid 
peroxides, in both blood plasma and erythrocytes, 
as well as oxLDL determination. While lipid pero-
xides rose proportionally, correlating with the degree 
of the ischemic disease, there were no significant 
differen ces in oxLDL concentrations, although oxLDL 
was the highest in USAP patients. In this study, lipid 
peroxides had better predictable values than oxLDL 
(Table III).

Taken together, our results showed that athero-
sclerotic disease is associated with both inflammation 
and oxidative stress, and the degree of their expres-
sion gradually changes correlating with the stages of 
the disease.

Acknowledgments. This work was supported by 
the Serbian Ministry of Science and Environmental 
Protection.

Group  n ESR         Le CRP (mg/L)

AMI 30          30±4.4***  10.6±0.7***        34.7±8.8***       

USAP 23 26±5.5*    9.1±0.8          12.4±3.7**       

SAP 16 21±3.6*              7.4±0.5            3.7±0.6**       

Control 16    10±1.7    6.9±0.2     1.6±0.3

The results were given as means ±SE
    * p<0.05 vs. control group
  ** p<0.01 vs. control group
*** p<0.001 vs. control group

Table II   Biomarkers of inflammation in patients 
with ischemic heart diseases

Group  n oxLDL
(ng/mL)

Plasma l.p.
(µmol/L)

Erythrocytes 
l.p.

(nmol/mLEr)

AMI 30       256±84  18.6±1.3*,**,***          9.57±0.7b,c

USAP 23 438±103  13.8±1.0***    8.28±0.8a,b

SAP 16 320±113  12.3±1.3***  5.67±0.5

Control 16 280±48    5.6±0.3  5.37±0.5

The results are given as means ±SE
    * p<0.05 vs. USAP     a-p <0.05 vs. SAP
  **  p<0.001 vs. SAP     b-p <0.005 vs. control group
*** p<0.001 vs. control group     c-p <0.001 vs. SAP

Table III   Markers of oxidant stress in patients 
with ischemic heart diseases

INTERAKCIJA IZME\U OKSIDATIVNOG STRESA I 
INFLAMATORNIH BIOMARKERA U ATEROSKLEROZI
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Kratak sadr`aj: Brojni rezultati pokazuju da postoji uska veza izme|u inflamacije, oksidativnog stresa 
i ateroskleroze. Inicijalni doga|aj u aterogenezi je disfunkcija ili aktivacija endotela. Ona mo`e biti izazvana 
mehani~kim, hemijskim, infektivnim ili imunolo{kim faktorima, {to ukazuje da gotovo svi faktori rizika za 
aterosklerozu mogu dovesti do endotelne disfunkcije. To izaziva kaskadu inflamatornih reakcija u kojima 
u~e stvuju monociti, makrofagi, T limfociti i }elije glatkih mi{i}a. Ove }elije i endotel nadalje produkuju 
ad he zione molekule, citokine, faktore rasta i metaloproteinaze, prolongiraju}i aterogenezu. Aktivacija enzima 
koji produkuju oksidanse, kao {to su NADPH oksidaza i azot-monoksid sintaza (NOS), dovodi do oksidativnog 
stresa i posledi~ne oksidativne modifikacije LDL, a oxLDL potom mo`e aktivisati endotelne }elije. Oksidativno 
modifikovani LDL preuzimaju makrofagi putem »scavenger« receptora. Rezultat toga je akumulacija holesterola 
u makrofagima i stvaranje penastih }elija koje predstavljaju bazu ateroskleroze. ^itav proces se cikli~no 
po navlja, dovode}i do formiranja uznapredovalih ateroskleroti~nih promena koje karakteri{e jezgro sa~injeno 
od lipida i nekroti~nog tkiva pokriveno fibroznom kapom.

Klju~ne re~i:  ateroskleroza, inflamacija, oksidativni stres
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