The detection of prostate cancer by complexed PSA

Based on the characteristics of a slow growing cancer, the aim to detect prostate cancer is the detection of potentially curable cancers that are either life-threatening or reduce the quality of life.

In detecting prostate cancer, beside digital rectal examination (DRE), prostate-specific antigen (PSA) has shown to increase the number of cancer cases detected. Prostate Specific-Antigen (PSA) applied to detect prostate cancer has emerged as the best of all human tumor markers currently in use, however, the biggest problem with PSA is the lack of specificity (which means a certain rate of false-positive results), negatively impacting the acceptance of PSA testing in diagnosing prostate cancer.

To improve the specificity of PSA testing, several approaches, e.g. building the ratio of serum PSA and the prostate gland volume or PSA velocity, which is the longitudinal measurement of serum PSA, to develop the rate of increase in PSA/year, are being under clinical evaluation these days (1).

The approach most widely used to optimize prostate cancer detection stemmed from the observation of Stenman and Lilja (2–5) noting PSA in serum being present in several forms including free, uncomplexed PSA and complexed PSA, e.g. PSA complexed to α-1-antichymotrypsin.

Free PSA (fPSA) is unbound, and is associated with benign prostatic hyperplasia (BPH), and complexed PSA (cPSA) is bound with other molecules, e.g. chymotrypsin, and the proportion is higher in men with prostate cancer.

Clinically speaking, men with prostate cancer tend to have lower percent free PSA (fPSA/tPSA) values than men with BPH. Thus, the percent free PSA values have been reported since several years to act as an aid in optimizing decisions about taking biopsies to clarify a suspicious result.

In order to measure PSA, it has been recommended that all PSA assays should be equimolar in their response to free and complexed PSA, because if an assay is not an equimolar one, this will bias the outcome, and can result in unacceptable clinical performance. Furthermore, these assays should be calibrated to the World Health Organization (WHO) First International Standard for PSA (90:10). There is an interesting publication on this topic, determining which assays currently used in England fulfill these criteria (6).
In 1998, a fully automated immunoassay to specifically detect complexed PSA was described by Allard and colleagues (7). In this assay, the binding site for building complexes is blocked by an antibody, and therefore only complexed PSA can be detected in a specific way. Details of the assay format are given in Figure 1 and 2.

Over the years, there have been several reports demonstrating the improved clinical value of using cPSA as a differentiator between patients that should be referred to biopsy for the clarification of an elevated PSA result.

In 2002, a review on the publications dealing with the clinical value of complexed PSA till that time was published in Urology (8). As summary, the authors stated that cPSA is a versatile assay for screening and diagnosis of prostate cancer, prediction of the pathologic stage, and monitoring of patients with PCa. Furthermore, it was stated that cPSA is significantly more specific than tPSA at all clinically relevant sensitivities. In this review was mentioned that cPSA is as specific as % fPSA.

Based on the fact that cPSA reduces the number of unnecessary biopsies by up to 20%, application of cPSA is less costly and, based on its increased specificity, reduces the anxiety in patients reported to have an elevated PSA result (9).

In laboratory medicine we are familiar with using Receiver Operating Characteristics (ROC) curves to compare 2 assays with each other with regards to their diagnostic performance (10, 11). The ROC method results in Area Under the Curve (AUC) results providing an overall measurement which might not reflect the differences in the clinical value of the markers compared at a distinct cut-off value chosen, e.g. 4 ng/mL tPSA as cut-off value for PSA testing.

In order to characterize which of two markers is of more clinical usefulness within a restricted range, the recently introduced Discordance Analysis Characteristics (DAC) has been proven to be a better tool than ROC curves (12). Within a given range of sensitivities or specificities, this method is able to investigate only those patients who are discordantly categorized in comparison by the assay. The DAC analysis provides data, making decisions on the clinical value of two assays easier. The DAC analysis has been recently applied in a study in which data from 1624 patients were analyzed (13). Within the group of discordantly tested patients (different results for tPSA vs. cPSA), cPSA detected patients with a 2-fold higher risk for having prostate cancer and with an up to 5.5-fold better specificity. cPSA, compared to tPSA, avoided more than 10% of unnecessary biopsies. This is in line with other publications reporting avoiding up to 20% of unnecessary biopsies by using cPSA as a first line marker to detect prostate cancer. There are several additional retrospective and prospective studies from Europe, America, and also Asia, focussing on the clinical usefulness of cPSA and concluding that cPSA enhances prostate cancer detection (14–16).

Results from the European Prostate Cancer Detection Study suggest that, in patients with elevated PSA levels (4–10 ng/mL), complexed PSA is more accurate than total PSA in differentiating patients with benign and malignant diseases (15).
cPSA has recently been included as an alternative to tPSA into the guidelines of the National Comprehensive Cancer Network of the United States (17).

Based on all the publications, we can have more confidence in the results of this special PSA test for prostate cancer than in conventional testing.

Towards personalized medicine in breast cancer: the serum HER-2/neu test

The activation and over-expression of cellular oncogenes are considered to play an important role in the development of breast cancer, and based on improvements in the molecular understanding of the biology of cancers in general, treatment and ongoing development of diagnostic tools in the direction of "personalized medicine" continues to change towards the ultimate goal of personalized treatments which will, hopefully, promote survival. Increased emphasis is now put on less morbid treatments and improving the quality of life (18).

One important member of the oncogene family is the Human Epidermal Growth Factor Receptor known as HER-2, also commonly referred to as c-erbB-2. The HER-2/neu oncogene (neu because it was first detected in a neuroblastoma) encodes a transmembrane tyrosine kinase growth factor receptor that is expressed on the cells of epithelial origin. HER-2/neu exerts its effect on the cell growth through the tyrosine kinase portion of the molecule. The full-length HER-2/neu is composed of three domains: the internal tyrosine kinase portion, a short transmembrane section, and the extracellular ligand binding domain that is referred to as the extracellular domain (ECD). The ECD is a glycoprotein with a molecular weight between 97–110 kD and is released from the cell surface by proteolytic cleavage.

The most widely known new therapy that meets the goal of personalized medicine is a humanized monoclonal antibody directed against the external domain of the HER-2 receptor named "Herceptin". Its clinical activity has been demonstrated as a single agent in patients whose cancers overexpress HER-2. Given in combination with paclitaxel and docetaxel, in patients with metastatic disease, it achieves high rates of tumor regression with other drugs (19, 20).

Predicting response and survival in trastuzumab-based therapy is an unsolved problem. Ali et al (21) recently reported on their pooled analysis of 7 trials from first-line Herceptin®-based therapy (with or without chemotherapy) studies. In these, serial serum ECD levels were included (21). Pretreatment and post-treatment serum (16–120 days) from 307 patients and data from 236 patients on overall survival were reported. The authors concluded that patients with < 20 % decrease in serum HER-2/ levels have a decreased benefit from this kind of therapy, and patients who do not have a significant decrease in ECD levels should be considered for additional HER-2/neu-targeted therapies.

The most widely used methods to analyze the HER-2/neu gene and protein are the Fluorescent In Situ Hybridization (FISH), to detect gene amplifications of the HER-2 gene, and Immunohistochemistry (IHC), to detect the HER-2 protein by immunoassay for the analysis of either the full-length HER-2 molecule or the circulating ECD.

The serum HER-2/neu from Bayer HealthCare’s Diagnostics Division, Tarrytown, N.Y., has been licensed by the FDA for follow-up testing and therapy monitoring in metastasizing breast cancer in women who have an initial value of 15 ng/mL or greater (22).

As FISH and IHC are reflecting the status of the gene or protein at that time point when the biopsy is taken, the ECD-HER-2/neu assay offers the opportunity for continuous measurements of this part of the HER-2 molecule.

A comprehensive review on the value of measuring the circulating levels of the HER-2/neu oncoprotein in breast cancer was published in 2004 by Carney et al (23).

In summary, the serum HER-2/neu serum test is a suitable method for monitoring patients with metastatic breast cancer. In addition, it can also be used to detect any progression of the disease and to determine the patient's response to therapy. High serum levels of HER-2/neu have also been confirmed as an independent risk factor for poor prognosis.

Conclusion

This overview points out that cPSA decreases the number of unnecessary biopsies at clinically relevant cut-off values, and thereby illustrates the value of
cPSA as a first line diagnostic test to detect prostate cancer.

Serum HER-2/neu as a new tool in monitoring therapy of metastatic breast cancer patients is becoming more and more important as a biomarker for assessing the real-time HER-2/neu status of these patients.

With the emergence of new HER-2/neu-targeted therapies, the upcoming role of this serum marker could be in determining prognosis and selecting patients for these specific therapies, as well as in evaluating response during treatment.

Both serum markers presented in this mini review aim to provide clinically relevant information for optimizing diagnosis and treatment of prostate and breast cancer patients.

KOMPLEKSIRANI PSA I SERUM HER-2/neu: NOVI SERUMSKI MARKERI U LEĆENJU RAKA PROSTATE I RAKA DOJKE

Rainer Neumann

European Scientific Affairs, Bayer Healthcare, Odeljenje za dijagnostiku, Leverkusen, Nemačka

Knjižnični reči: rak prostate, antigen specifičan za prostatu (PSA), kompleksirani PSA, rak dojke, HER-2/neu

References


Received: August 10, 2006
Accepted: August 25, 2006